Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)/(1+t+t^(2)), AA...

If `f(x)=int_(1)^(x)(logt)/(1+t+t^(2))`, `AAx ge 1`, then `f(2)` is equal to

A

`f(0)`

B

`f(1)`

C

`f((1)/(2))`

D

`f(4)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Subjective Type Questions|15 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to