Home
Class 12
PHYSICS
Two bodies of mass 1 kg and 3 kg have po...

Two bodies of mass `1 kg` and `3 kg` have position vectors `hat i+ 2 hat j + hat k` and `- 3 hat i- 2 hat j+ hat k`, respectively. The centre of mass of this system has a position vector.

A

`-2hat(i)-hat(j)+hat(k)`

B

`2hat(i)-hat(j)-2hat(k)`

C

`-hat(i)+hat(j)+hat(k)`

D

`-2hat(i)+2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the center of mass of the two bodies, we will use the formula for the center of mass (R_cm) of a system of particles: \[ \mathbf{R}_{cm} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} \] ### Step-by-Step Solution: 1. **Identify the masses and position vectors**: - Mass \( m_1 = 1 \, \text{kg} \) with position vector \( \mathbf{r}_1 = \hat{i} + 2\hat{j} + \hat{k} \) - Mass \( m_2 = 3 \, \text{kg} \) with position vector \( \mathbf{r}_2 = -3\hat{i} - 2\hat{j} + \hat{k} \) 2. **Substitute the values into the center of mass formula**: \[ \mathbf{R}_{cm} = \frac{1 \cdot (\hat{i} + 2\hat{j} + \hat{k}) + 3 \cdot (-3\hat{i} - 2\hat{j} + \hat{k})}{1 + 3} \] 3. **Calculate the numerator**: - First, calculate \( 1 \cdot (\hat{i} + 2\hat{j} + \hat{k}) \): \[ = \hat{i} + 2\hat{j} + \hat{k} \] - Then calculate \( 3 \cdot (-3\hat{i} - 2\hat{j} + \hat{k}) \): \[ = -9\hat{i} - 6\hat{j} + 3\hat{k} \] - Now combine these results: \[ \hat{i} + 2\hat{j} + \hat{k} - 9\hat{i} - 6\hat{j} + 3\hat{k} = (-8\hat{i} - 4\hat{j} + 4\hat{k}) \] 4. **Calculate the denominator**: \[ m_1 + m_2 = 1 + 3 = 4 \] 5. **Combine the results**: \[ \mathbf{R}_{cm} = \frac{-8\hat{i} - 4\hat{j} + 4\hat{k}}{4} \] 6. **Simplify the expression**: \[ \mathbf{R}_{cm} = -2\hat{i} - \hat{j} + \hat{k} \] ### Final Answer: The position vector of the center of mass is: \[ \mathbf{R}_{cm} = -2\hat{i} - \hat{j} + \hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Two bodies of 6kg and 4kg masses have their velocity 5hati - 2 hat j + 10 hat k and 10hat i - 2 hat j + 5 hat k respectively. Then, the velocity of their centre of mass is

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot

Find the projection of the vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat k

Particles of masses 100 and 300 gram have position vectors (2hat(i)+5hat(j)+13hat(k)) and (-6hat(i)+4hat(j)+2hat(k)) . Position vector of their centre of mass is

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1(i) internally (ii) externally

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1(i) internally (ii) externally

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1 (i) internally (ii) externally

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.