Home
Class 12
PHYSICS
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)...

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` is

A

`(A^(2)+B^(2)+AB)^(1//2)`

B

`(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`

C

`A+B`

D

`(A^(2)+B^(2)sqrt(3)+AB)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B} \] ### Step 1: Understand the relationship between cross product and dot product The magnitude of the cross product of two vectors \(\vec{A}\) and \(\vec{B}\) is given by: \[ |\vec{A} \times \vec{B}| = AB \sin \theta \] where \(A = |\vec{A}|\), \(B = |\vec{B}|\), and \(\theta\) is the angle between the two vectors. The dot product of the vectors is given by: \[ \vec{A} \cdot \vec{B} = AB \cos \theta \] ### Step 2: Substitute the expressions into the given equation Substituting these expressions into the given equation, we have: \[ AB \sin \theta = \sqrt{3} (AB \cos \theta) \] ### Step 3: Simplify the equation Assuming \(AB \neq 0\), we can divide both sides by \(AB\): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 4: Divide both sides by \(\cos \theta\) This gives us: \[ \tan \theta = \sqrt{3} \] ### Step 5: Find the angle \(\theta\) The angle \(\theta\) that satisfies \(\tan \theta = \sqrt{3}\) is: \[ \theta = 60^\circ \quad \text{or} \quad \theta = \frac{\pi}{3} \text{ radians} \] ### Step 6: Use the parallelogram law to find \(|\vec{A} + \vec{B}|\) The magnitude of the sum of two vectors can be calculated using the parallelogram law: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] Substituting \(\theta = 60^\circ\): \[ |\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + 2AB \cos(60^\circ)} \] ### Step 7: Substitute \(\cos(60^\circ)\) Since \(\cos(60^\circ) = \frac{1}{2}\), we have: \[ |\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + 2AB \cdot \frac{1}{2}} \] This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + AB} \] ### Conclusion Thus, the final value of \(|\vec{A} + \vec{B}|\) is: \[ |\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + AB} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)xxvec(B)=vec(B)xxvec(A) , then the angle between vec(A) and vec(B) is-

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

If vec(A)xxvec(B)= vec(C )+vec(D) , then select the correct alternative.

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =