Home
Class 12
PHYSICS
The electric filed intensity at a point ...

The electric filed intensity at a point in vacuum is equal to

A

Zero

B

Force a proton would experience there

C

Force an electron would experience there

D

Force a unit positive charge would experience there

Text Solution

AI Generated Solution

The correct Answer is:
To determine the electric field intensity at a point in vacuum due to a source charge, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Source Charge**: Let's denote the source charge as \( Q \). For this problem, we will consider \( Q = 1 \, \text{C} \) (1 coulomb). 2. **Define the Electric Field**: The electric field \( E \) at a point in space due to a charge \( Q \) is defined as the force \( F \) experienced by a unit positive test charge placed at that point, divided by the magnitude of the test charge \( q \): \[ E = \frac{F}{q} \] For a unit positive charge, \( q = 1 \, \text{C} \), so the formula simplifies to: \[ E = F \] 3. **Calculate the Force on the Test Charge**: The force \( F \) experienced by a test charge \( q \) due to the source charge \( Q \) can be calculated using Coulomb's law: \[ F = k \frac{|Q \cdot q|}{r^2} \] where \( k \) is Coulomb's constant (\( k \approx 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)) and \( r \) is the distance from the source charge to the point where the electric field is being measured. 4. **Substituting the Values**: For a unit positive charge \( q = 1 \, \text{C} \): \[ F = k \frac{|Q \cdot 1|}{r^2} = k \frac{Q}{r^2} \] Thus, the electric field \( E \) at that point becomes: \[ E = \frac{F}{1} = k \frac{Q}{r^2} \] 5. **Final Expression**: Therefore, the electric field intensity \( E \) at a point in vacuum due to a source charge \( Q \) is given by: \[ E = k \frac{Q}{r^2} \] ### Conclusion: In this case, if \( Q = 1 \, \text{C} \), the electric field intensity at a distance \( r \) from the charge is: \[ E = k \frac{1}{r^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the electric field intensity at any point on the axis of a charged rod of length 'L' and linear charge density lambda ? The point is separated from the nearer end by a.

If the linear charge density of a cylinder is 4 mu C m^(-6) ,then electric field intensity at point 3.6 cm from axis is :

Two point electric charges of unknown magnitudes and signs are placed a certain distance apart. The electric field intensity is zero at a point not between the charges but on the line joining them. Write two essential conditions for this to happen.

The speed of light in vacuum is equal to

State Gauss's theorem in electrostatics. Apply this theorem to derive an expression for electric field intensity at a point outside a uniformly charged thin spherical shell.

The SI unit of electric field intensity is

Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities (sigma) is

Find out electric field intensity at point A (0, 1m, 2m) due to a point charge -20 muC situated at point B (sqrt(2)m, 0, 1m) .

Derive an expression for electric field intensity at a point due to point charge.

Electric field intensity at a point due to an infinite sheet of charge having surface charge density sigma is E .If sheet were conducting electric intensity would be