Home
Class 12
PHYSICS
An isolated solid metal sphere of radius...

An isolated solid metal sphere of radius `R` is given an electric charge. The variation of the intensity of the electric field with the distance `r` from the centre of the sphere is best shown by

A

B

C

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the variation of the electric field intensity with distance from the center of an isolated solid metal sphere of radius \( R \) that is given an electric charge, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Sphere's Properties**: - An isolated solid metal sphere, when given a charge \( Q \), will have its charge distributed uniformly on its surface. 2. **Electric Field Inside the Sphere**: - For any point inside the sphere (where \( r < R \)), the electric field intensity \( E \) is zero. This is because the electric field inside a conductor in electrostatic equilibrium is always zero. \[ E = 0 \quad \text{for} \quad r < R \] 3. **Electric Field on the Surface of the Sphere**: - At the surface of the sphere (where \( r = R \)), we can calculate the electric field using Gauss's Law. The electric field intensity \( E \) at the surface is given by: \[ E = \frac{1}{4\pi \epsilon_0} \frac{Q}{R^2} \] This value is the maximum electric field intensity for the sphere. 4. **Electric Field Outside the Sphere**: - For points outside the sphere (where \( r > R \)), the electric field intensity behaves as if all the charge were concentrated at a point at the center of the sphere. The formula for the electric field intensity at a distance \( r \) from the center is: \[ E = \frac{1}{4\pi \epsilon_0} \frac{Q}{r^2} \] This shows that the electric field intensity decreases with the square of the distance from the center of the sphere. 5. **Graphical Representation**: - The graph of electric field intensity \( E \) versus distance \( r \) will show: - \( E = 0 \) for \( r < R \) - A maximum value at \( r = R \) - A decreasing curve for \( r > R \) 6. **Conclusion**: - Therefore, the correct representation of the variation of electric field intensity with distance from the center of the sphere is best shown by a graph that starts at zero, reaches a maximum at the surface, and then decreases as you move further away. ### Final Answer: The correct option for the variation of the electric field intensity with distance \( r \) from the center of the sphere is represented by option 3 (as mentioned in the video).
Promotional Banner

Similar Questions

Explore conceptually related problems

Following curve shows the variation of intesity of gravitational field (vec(I)) with distance from the centre of solid sphere(r) :

A conducting sphere of radius R is given a charge Q . The electric potential and the electric field at the centre of the sphere respectively are

A conducting sphere of radius R is given a charge Q . The electric potential and the electric field at the centre of the sphere respectively are

A conducting sphere of radius R is charged to a potential of V volts. Then the electric field at a distance r ( gt R) from the centre of the sphere would be

A non-conducting solid sphere of radius R is uniformly charged. The magnitude of the electric filed due to the sphere at a distance r from its centre

A non-conducting solid sphere of radius R, has a uniform charge density. The graph representing variation of magnitude of electric field (E) as a function of distance (x) from the centre of the sphere is

For a uniformly charged non conducting sphere of radius R which of following shows a correct graph between the electric field intensity and the distance from the centre of sphere –

There is a solid sphere of radius R having uniformly distributed charge throughout it. What is the relation between electric field E and distance r from the centre (r is less than R) ?

If the potential at the centre of a uniformly charged hollow sphere of radius R is V, then electric field at a distance r from the centre of sphere will be (rgtR) .

Which one of the following graphs represents the variation of electric field with distance r from the centre of a charged spherical conductor of radius R?