Home
Class 12
PHYSICS
If instantaneous current in a circuit is...

If instantaneous current in a circuit is given by `I=(2+3 sin omegat)` A, then the effective value of resulting current in the circuit is

A

`sqrt((17)/(2))` A

B

`sqrt((2)/(17))` A

C

`sqrt((3)/sqrt(2))`

D

`3sqrt(2)` A

Text Solution

AI Generated Solution

The correct Answer is:
To find the effective (RMS) value of the instantaneous current given by \( I(t) = 2 + 3 \sin(\omega t) \) A, we will follow these steps: ### Step 1: Understand the formula for RMS current The effective (RMS) value of a current \( I(t) \) over one complete cycle is given by: \[ I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T I^2(t) \, dt} \] where \( T \) is the period of the function. ### Step 2: Determine the period \( T \) The function \( \sin(\omega t) \) has a period of \( T = \frac{2\pi}{\omega} \). ### Step 3: Substitute \( I(t) \) into the formula We need to calculate \( I^2(t) \): \[ I(t) = 2 + 3 \sin(\omega t) \] \[ I^2(t) = (2 + 3 \sin(\omega t))^2 = 4 + 12 \sin(\omega t) + 9 \sin^2(\omega t) \] ### Step 4: Integrate \( I^2(t) \) over one period Now we can calculate the integral: \[ \int_0^T I^2(t) \, dt = \int_0^T \left(4 + 12 \sin(\omega t) + 9 \sin^2(\omega t)\right) dt \] This can be split into three separate integrals: \[ \int_0^T 4 \, dt + \int_0^T 12 \sin(\omega t) \, dt + \int_0^T 9 \sin^2(\omega t) \, dt \] ### Step 5: Calculate each integral 1. **First integral**: \[ \int_0^T 4 \, dt = 4T = 4 \cdot \frac{2\pi}{\omega} = \frac{8\pi}{\omega} \] 2. **Second integral**: \[ \int_0^T 12 \sin(\omega t) \, dt = 0 \quad (\text{since the integral of } \sin \text{ over a full period is zero}) \] 3. **Third integral**: Using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ \int_0^T 9 \sin^2(\omega t) \, dt = 9 \int_0^T \frac{1 - \cos(2\omega t)}{2} \, dt = \frac{9}{2} \left( T - 0 \right) = \frac{9}{2} \cdot \frac{2\pi}{\omega} = \frac{9\pi}{\omega} \] ### Step 6: Combine the results Now we can combine the results of the integrals: \[ \int_0^T I^2(t) \, dt = \frac{8\pi}{\omega} + 0 + \frac{9\pi}{\omega} = \frac{17\pi}{\omega} \] ### Step 7: Substitute back into the RMS formula Now we substitute this back into the RMS formula: \[ I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T I^2(t) \, dt} = \sqrt{\frac{1}{\frac{2\pi}{\omega}} \cdot \frac{17\pi}{\omega}} = \sqrt{\frac{17\omega}{2}} \] ### Step 8: Final result Thus, the effective value of the resulting current in the circuit is: \[ I_{\text{rms}} = \sqrt{\frac{17}{2}} \text{ A} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The current I in the circuit is

The current in the given circuit is

The value of current I in the circuit will be

The current I shown in the circuit is

Current in an ac circuit is given by I= 3 sin omega t + 4 cos omega t, then

The value of current i_(1) in the given circuit is

Value of current i in the follwing circuit is:

What is value of current I in given circuit

What is the value of current I in given circuits (a)

The current 'i' in the given circuit is