Home
Class 12
PHYSICS
A heavy vehicle moving with velocity 15 ...

A heavy vehicle moving with velocity 15 m/s strikes an object of very small mass at rest head on elastically. Velocity of object ater collision is

A

15 m/s

B

25 m/s

C

20 m/s

D

30 m/s

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of a heavy vehicle colliding elastically with a small mass at rest, we will use the principles of conservation of momentum and the properties of elastic collisions. ### Step-by-Step Solution: 1. **Identify the Variables:** - Let the mass of the heavy vehicle be \( M \). - Let the mass of the small object be \( m \) (where \( m \) is very small compared to \( M \)). - The initial velocity of the heavy vehicle \( u_1 = 15 \, \text{m/s} \). - The initial velocity of the small object \( u_2 = 0 \, \text{m/s} \). - The final velocity of the heavy vehicle after the collision \( v_1 \) (unknown). - The final velocity of the small object after the collision \( v_2 \) (unknown). 2. **Apply Conservation of Momentum:** The total momentum before the collision equals the total momentum after the collision. \[ Mu_1 + mu_2 = Mv_1 + mv_2 \] Substituting the known values: \[ M(15) + m(0) = Mv_1 + mv_2 \] This simplifies to: \[ 15M = Mv_1 + mv_2 \quad \text{(1)} \] 3. **Apply the Coefficient of Restitution:** For an elastic collision, the coefficient of restitution \( e = 1 \). This means: \[ e = \frac{v_2 - v_1}{u_1 - u_2} \] Substituting the known values: \[ 1 = \frac{v_2 - v_1}{15 - 0} \] This simplifies to: \[ v_2 - v_1 = 15 \quad \text{(2)} \] 4. **Substitute Equation (2) into Equation (1):** From equation (2), we can express \( v_1 \) in terms of \( v_2 \): \[ v_1 = v_2 - 15 \] Substitute this into equation (1): \[ 15M = M(v_2 - 15) + mv_2 \] Expanding this gives: \[ 15M = Mv_2 - 15M + mv_2 \] Rearranging terms: \[ 30M = Mv_2 + mv_2 \] Factoring out \( v_2 \): \[ 30M = v_2(M + m) \quad \text{(3)} \] 5. **Neglect the Small Mass \( m \):** Since \( m \) is very small compared to \( M \), we can neglect it in the equation: \[ 30M \approx v_2 M \] Thus: \[ v_2 \approx \frac{30M}{M} = 30 \, \text{m/s} \] ### Conclusion: The velocity of the small object after the collision is approximately \( 30 \, \text{m/s} \).
Promotional Banner

Topper's Solved these Questions

  • WORK, ENERGY AND POWER

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A)|64 Videos
  • WORK, ENERGY AND POWER

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - B)|35 Videos
  • WORK, ENERGY AND POWER

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|14 Videos
  • WAVES

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT ( SECTION-D ( Assertion - Reason Type Questions ))|12 Videos

Similar Questions

Explore conceptually related problems

A body of mass a moving with a velocity b strikes a body of mass c and gets embedded into it. The velocity of the systems after collision is

Two identical balls A and B moving with velocities + 0.5 m/s and -0.3 .m/s respectively collide head-on elastically. The velocities of the ball A and B after collision will be respectively

A body of mass m moving with a velocity v is approaching a second object of same mass but at rest. The kinetic energy of the two objects as viewed from the centre of mass is

A body of mass 2 kg moving with a velocity 3 m//s collides with a body of mass 1 kg moving with a velocity of 4 m//s in opposite direction. If the collision is head on and completely inelastic, then

A bullet of mass m moving with velocity v strikes a block of mass M at rest and gets embedded into it. The kinetic energy of the composite block will be

A mass m_(1) moves with a great velocity. It strikes another mass m_(2) at rest in head-on collision. It comes back along its path with low speed after collision. Then find out whether m_(1)ltm _(2) or m_(1)gtm_(2) .

Two equal masses m_1 and m_2 moving along the same straight line with velocites +3 m//s and - 5 m//s respectively collide elastically. Their velocities after the collision will be respectively.

Two equal masses m_1 and m_2 moving along the same straight line with velocites +3 m//s and - 5 m//s respectively collide elastically. Their velocities after the collision will be respectively.

A ball of mass m moving with velocity v collides head on elastically with another identical ball moving with velocity - V. After collision

An object of mass 40kg and having velocity 4 m//s collides with another object of mass 60 kg having velocity 2 m//s . The loss of energy when the collision is perfectly inelastic is

AAKASH INSTITUTE ENGLISH-WORK, ENERGY AND POWER-EXERCISE
  1. From a waterfall, water is falling down at the rate of 100kg / s on th...

    Text Solution

    |

  2. A body is moved along a straight line by a machine delivering constant...

    Text Solution

    |

  3. In perfectly elastic collision between two masses m(1)and m(2) in one ...

    Text Solution

    |

  4. A ball of mass mis released from the top of an inclined plane of incl...

    Text Solution

    |

  5. Two identical balls each of mass 4 kg are moving towards each other wi...

    Text Solution

    |

  6. A ball of mass 4 kg moving on a smooth horizontal surface makes an ela...

    Text Solution

    |

  7. A heavy vehicle moving with velocity 15 m/s strikes an object of very ...

    Text Solution

    |

  8. Two balls of equal masses m each undergo oblique collision. If colisio...

    Text Solution

    |

  9. A ball falls from a height such that it strikes the floor of lift at 1...

    Text Solution

    |

  10. A block of 10 g slides on smooth horizontal surface with 20 m/s toward...

    Text Solution

    |

  11. Two steel balls A and B of mass 10 kg and 10 g rolls towards each othe...

    Text Solution

    |

  12. Two ivory balls are placed together at rest. A third identical ball mo...

    Text Solution

    |

  13. A ball is dropped from height h on horizontal floor. If it loses 60% o...

    Text Solution

    |

  14. Two cars of same mass are moving with velocities v(1) and v(2) respect...

    Text Solution

    |

  15. Two identical balls moving in opposite directions with speed 20 m/s an...

    Text Solution

    |

  16. A ball of mass 5 kg moving with speed 8 m/s collides head on with anot...

    Text Solution

    |

  17. A ball dropped from height h on a horizontal floor goes up to the heig...

    Text Solution

    |

  18. Two identical balls each moving with speed v at right angle to each ot...

    Text Solution

    |

  19. A ball is dropped on a horizontal surface from height h. If it rebound...

    Text Solution

    |

  20. A body of mass m moving with a constant velocity collides head on with...

    Text Solution

    |