Home
Class 12
PHYSICS
In the following questions a statement o...

In the following questions a statement of assertion (A) is followed by a statement of reason ( R).
A : If `vecA bot vecB,` then `|vecA+vecB|=|A-vecB|`.
R: If `vecA bot vecB` then `(vecA+vecB) ` is perpendicular to `vecA-vecB` .

A

If both Assertion & Reason are true and the reason is the correct explanation of the assertion then mark (1) .

B

If both Assertion & Reason are true but the reason is not the correct explanation of the assertion then mark (2)

C

If Assertion is true statement but Reason is false then mark (3).

D

If both Assertion and Reason are false statements then mark (4) .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both the assertion (A) and the reason (R) given in the question. ### Step 1: Analyze the Assertion (A) The assertion states: "If \(\vec{A} \perp \vec{B}\), then \(|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|\)". 1. **Understanding Perpendicular Vectors**: If two vectors \(\vec{A}\) and \(\vec{B}\) are perpendicular, the angle \(\theta\) between them is \(90^\circ\). 2. **Using the Magnitude Formula**: The magnitude of the sum of two vectors is given by: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos(\theta)} \] Since \(\theta = 90^\circ\), \(\cos(90^\circ) = 0\): \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2} \] 3. **Magnitude of the Difference**: The magnitude of the difference of two vectors is given by: \[ |\vec{A} - \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2|\vec{A}||\vec{B}|\cos(\theta)} \] Again, since \(\theta = 90^\circ\): \[ |\vec{A} - \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2} \] 4. **Conclusion for Assertion**: Since both magnitudes are equal: \[ |\vec{A} + \vec{B}| = |\vec{A} - \vec{B}| \] Therefore, the assertion (A) is **True**. ### Step 2: Analyze the Reason (R) The reason states: "If \(\vec{A} \perp \vec{B}\), then \((\vec{A} + \vec{B})\) is perpendicular to \((\vec{A} - \vec{B})\)". 1. **Dot Product for Perpendicularity**: Two vectors \(\vec{X}\) and \(\vec{Y}\) are perpendicular if their dot product is zero: \[ \vec{X} \cdot \vec{Y} = 0 \] 2. **Calculate the Dot Product**: Let \(\vec{X} = \vec{A} + \vec{B}\) and \(\vec{Y} = \vec{A} - \vec{B}\): \[ \vec{X} \cdot \vec{Y} = (\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = \vec{A} \cdot \vec{A} - \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} - \vec{B} \cdot \vec{B} \] 3. **Simplifying the Dot Product**: Since \(\vec{A} \cdot \vec{B} = 0\) (because they are perpendicular): \[ \vec{X} \cdot \vec{Y} = |\vec{A}|^2 - |\vec{B}|^2 \] This is not guaranteed to be zero unless \(|\vec{A}| = |\vec{B}|\). 4. **Conclusion for Reason**: Therefore, the reason (R) is **False** because \((\vec{A} + \vec{B})\) is not necessarily perpendicular to \((\vec{A} - \vec{B})\). ### Final Conclusion - Assertion (A) is **True**. - Reason (R) is **False**. Thus, the correct answer is that the assertion is true but the reason is false. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If vectors vecA and vecB are such that |vecA+vecB|= |vecA|= |vecB| then |vecA-vecB| may be equated to

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.