Home
Class 12
PHYSICS
Three vectors are given below vec(a)=h...

Three vectors are given below
`vec(a)=hat(i)+2hat(i)+3hat(k),vec(b) = 2hat(i)+4hat(j) + 6 hat(k) and vec(c ) = 3hat(i) + 6hat(j) + 9hat(k)`.
Find the components of the vector `bara+barb-barc`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the components of the vector \(\vec{a} + \vec{b} - \vec{c}\), we will follow these steps: ### Step 1: Write down the given vectors The vectors are given as: \[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \vec{b} = 2\hat{i} + 4\hat{j} + 6\hat{k} \] \[ \vec{c} = 3\hat{i} + 6\hat{j} + 9\hat{k} \] ### Step 2: Add vectors \(\vec{a}\) and \(\vec{b}\) We will add the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} + \vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k}) + (2\hat{i} + 4\hat{j} + 6\hat{k}) \] Combine the components: \[ = (1 + 2)\hat{i} + (2 + 4)\hat{j} + (3 + 6)\hat{k} \] \[ = 3\hat{i} + 6\hat{j} + 9\hat{k} \] ### Step 3: Subtract vector \(\vec{c}\) Now, we will subtract \(\vec{c}\) from the result of \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} - \vec{c} = (3\hat{i} + 6\hat{j} + 9\hat{k}) - (3\hat{i} + 6\hat{j} + 9\hat{k}) \] Combine the components: \[ = (3 - 3)\hat{i} + (6 - 6)\hat{j} + (9 - 9)\hat{k} \] \[ = 0\hat{i} + 0\hat{j} + 0\hat{k} \] ### Step 4: Final Result Thus, the components of the vector \(\vec{a} + \vec{b} - \vec{c}\) are: \[ \vec{a} + \vec{b} - \vec{c} = \vec{0} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .