Home
Class 12
CHEMISTRY
From the following molar conductivities ...

From the following molar conductivities at infinite dilution,
`Lamda_(m)^(@) " for " Al_(2) (SO_(4))_(3) = 858 S cm^(2) mol^(-1)`
`Lamda_(m)^(@) " for " NH_(4)OH = 238.3 S cm^(2) mol^(-1)`
`Lamda_(m)^(@) " for " (NH_(4))_(2)SO_(4) = 238.4 S cm^(2) mol^(-1)`
Calculate `Lamda_(m)^(@) " for " Al(OH)_(3)`

A

`715.2 S cm^(2) mol^(-1)`

B

`1575.6 S cm^(2) mol^(-1)`

C

`786.3 S cm^(2) mol^(-1)`

D

`157.56 S cm^(2) mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the molar conductivity at infinite dilution (Λ_m^(@)) for Al(OH)₃ using the provided molar conductivities of the other compounds, we can follow these steps: ### Step 1: Identify the ions in Al(OH)₃ Al(OH)₃ dissociates into: - 1 Al³⁺ ion - 3 OH⁻ ions ### Step 2: Write the expression for Λ_m^(@) of Al(OH)₃ Using the molar conductivities of the ions, we can express the molar conductivity of Al(OH)₃ as: \[ Λ_m^(@) \text{(Al(OH)₃)} = Λ_m^(@) \text{(Al³⁺)} + 3 \cdot Λ_m^(@) \text{(OH⁻)} \] ### Step 3: Use the provided data to find Λ_m^(@) for Al³⁺ and OH⁻ From the problem, we know: - For Al₂(SO₄)₃: \[ Λ_m^(@) \text{(Al₂(SO₄)₃)} = 858 \, \text{S cm}^2 \text{mol}^{-1} \] This dissociates into 2 Al³⁺ and 3 SO₄²⁻ ions: \[ Λ_m^(@) \text{(Al³⁺)} + 3 \cdot Λ_m^(@) \text{(SO₄²⁻)} = 858 \] - For (NH₄)₂SO₄: \[ Λ_m^(@) \text{((NH₄)₂SO₄)} = 238.4 \, \text{S cm}^2 \text{mol}^{-1} \] This dissociates into 2 NH₄⁺ and 1 SO₄²⁻: \[ 2 \cdot Λ_m^(@) \text{(NH₄⁺)} + Λ_m^(@) \text{(SO₄²⁻)} = 238.4 \] - For NH₄OH: \[ Λ_m^(@) \text{(NH₄OH)} = 238.3 \, \text{S cm}^2 \text{mol}^{-1} \] This dissociates into NH₄⁺ and OH⁻: \[ Λ_m^(@) \text{(NH₄⁺)} + Λ_m^(@) \text{(OH⁻)} = 238.3 \] ### Step 4: Solve the equations 1. From (NH₄)₂SO₄: \[ 2 \cdot Λ_m^(@) \text{(NH₄⁺)} + Λ_m^(@) \text{(SO₄²⁻)} = 238.4 \quad \text{(Equation 1)} \] 2. From Al₂(SO₄)₃: \[ Λ_m^(@) \text{(Al³⁺)} + 3 \cdot Λ_m^(@) \text{(SO₄²⁻)} = 858 \quad \text{(Equation 2)} \] 3. From NH₄OH: \[ Λ_m^(@) \text{(NH₄⁺)} + Λ_m^(@) \text{(OH⁻)} = 238.3 \quad \text{(Equation 3)} \] ### Step 5: Express Λ_m^(@) for Al(OH)₃ Using the values from the equations, we can express: \[ Λ_m^(@) \text{(Al(OH)₃)} = \frac{1}{2} Λ_m^(@) \text{(Al₂(SO₄)₃)} + 3 Λ_m^(@) \text{(NH₄OH)} - \frac{3}{2} Λ_m^(@) \text{((NH₄)₂SO₄)} \] ### Step 6: Substitute the values Substituting the known values: \[ Λ_m^(@) \text{(Al(OH)₃)} = \frac{1}{2} \cdot 858 + 3 \cdot 238.3 - \frac{3}{2} \cdot 238.4 \] Calculating: \[ = 429 + 714.9 - 357.6 \] \[ = 429 + 714.9 - 357.6 = 786.3 \, \text{S cm}^2 \text{mol}^{-1} \] ### Final Answer: \[ Λ_m^(@) \text{(Al(OH)₃)} = 786.3 \, \text{S cm}^2 \text{mol}^{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

From the following molar conductivities at infinite dilution : wedge_(m)^(@) for Ba(OH)_(2)=457.6Omega^(1)cm^(2)mol^(-1) wedge_(m)^(@) for BaCl_(2)=240.6Omega^(-1) cm^(2)mol^(-1) wedge_(m)^(@) for NH_(4)Cl=129.8 Omega^(-1) cm^(2) mol^(-1) Calculate wedge_(m)^(@) for NH_(4)OH .

What will be the molar conductivity of Al 3+ ions at infinite dilution if molar conductivity of Al^(2) (SO_(4))_(3) is 858 S cm^(2) "mol" ^(-1) and ionic conductance of SO_(4)^(2-) is 160 S cm^(2) "mol" ^(-1) at infinite dilution ?

At 298 K the molar conductivities at infinite dilution (^^_(m)^(@)) of NH_(4)Cl, KOH and KCl are 152.8, 272.6 and "149.8 S cm"^(2)"mol"^(-1) respectively. The ^^_(m)^(@) of NH_(4)OH in "S cm"^(2)"mol"^(-1) and % dissociation of 0.01 M NH_(4)OH with ^^_(m)="25.1 S cm"^(2)"mol"^(-1) at the same temperature are

Calculate the degree of dissociation (alpha) of acetic acid if its molar conductivity (^^_(m)) is 39.05 S cm^(2) mol^(-1) Given lamda^(@) (H^(+)) = 349.6 cm^(2) mol^(-1) and lamda^(2) (CH_(3)COO^(-)) = 40.9 S cm^(2) mol^(-1)

Molar conductivities (Lambda_(m)^(@)) at infinite dilution of NaCl, HCl and CH_(3)COONa arc 126.4, 425.9 and 91.0 S cm^(2) mol^(-1) respectively. Lambda_(m)^(@) for CH_(3)COOH will be

Calculate lamda_(m)^(@) for NH_(4)OH given that values of lamda_(m)^(@) for Ba(OH)_(2), BaCl_(2) and NH_(4)Cl as 523.28, 280.0 and 129.8 S cm^(2) mol^(-1) respectively.

Calculate molar conductivity of HCOOH at infinite dilution, if equivalent conductivity of H_(2)SO_(4)=x_(1), " " Al_(2)(SO_(4))_(3)=x_(2)," " (HCOO)_(3)Al=x_(3)

Calculate lambda_(m)^(@) for NH_(4)OH given that values of lambda_(m)^(@) for Ba(OH)_(2) BaCI_(2) and NH_(4)CI as 523.28 280.0and 129.8 S cm^(2) mol^(-1) respectively

Limiting molar conductivity of NH_(4)OH [i.e., Lambda_(m)^(@)(NH_(4)OH) ] is equal to:

If molar conductivities (Lambda_m^0) at infinite dilution of KBr, HBr and CH_3COOK are 151.6, 427.7 and 114.4 S cm^2 mol ^(-1) respectively then (Lambda_m^0) for CH_3COOH will be