For strong electrolytes the values of molar conductivities at infinite dilution are given below
`{:("Electrolyte",^^_(m)^(@) (Sm^(2 mol^(-1))),(BaCl_(2),280 xx 10^(-4)),(NaCl,126.5 xx 10^(-4)),
(NaOH,48 xx 10^(-4)):}`
The molar conductance at infinite dilution for `Ba(OH)_(2)` is
For strong electrolytes the values of molar conductivities at infinite dilution are given below
`{:("Electrolyte",^^_(m)^(@) (Sm^(2 mol^(-1))),(BaCl_(2),280 xx 10^(-4)),(NaCl,126.5 xx 10^(-4)),
(NaOH,48 xx 10^(-4)):}`
The molar conductance at infinite dilution for `Ba(OH)_(2)` is
`{:("Electrolyte",^^_(m)^(@) (Sm^(2 mol^(-1))),(BaCl_(2),280 xx 10^(-4)),(NaCl,126.5 xx 10^(-4)),
(NaOH,48 xx 10^(-4)):}`
The molar conductance at infinite dilution for `Ba(OH)_(2)` is
A
`523 xx 10^(-4) Sm^(2) mol^(-1)`
B
`52.3 xx 10^(-4) Sm^(2) mol^(-1)`
C
`5.23 xx 10^(-4) Sm^(2) mol^(-1)`
D
`6.23 xx 10^(-4) Sm^(2) mol^(-1)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the molar conductance at infinite dilution for barium hydroxide, \( \text{Ba(OH)}_2 \), we can use Kohlrausch's law, which states that the molar conductivity of an electrolyte at infinite dilution is the sum of the molar conductivities of its constituent ions.
### Step-by-Step Solution:
1. **Identify the ions in \( \text{Ba(OH)}_2 \)**:
- Barium hydroxide dissociates in solution as follows:
\[
\text{Ba(OH)}_2 \rightarrow \text{Ba}^{2+} + 2 \text{OH}^-
\]
- Thus, it produces one barium ion \( \text{Ba}^{2+} \) and two hydroxide ions \( \text{OH}^- \).
2. **Write the expression for molar conductivity**:
- According to Kohlrausch's law, the molar conductivity \( \Lambda^0 \) for \( \text{Ba(OH)}_2 \) can be expressed as:
\[
\Lambda^0_{\text{Ba(OH)}_2} = \Lambda^0_{\text{Ba}^{2+}} + 2 \Lambda^0_{\text{OH}^-}
\]
3. **Use given data to find individual conductivities**:
- From the provided data:
- For \( \text{BaCl}_2 \):
\[
\Lambda^0_{\text{Ba}^{2+}} + 2 \Lambda^0_{\text{Cl}^-} = 280 \times 10^{-4} \, \text{S m}^2/\text{mol}
\]
- For \( \text{NaCl} \):
\[
\Lambda^0_{\text{Na}^+} + \Lambda^0_{\text{Cl}^-} = 126.5 \times 10^{-4} \, \text{S m}^2/\text{mol}
\]
- For \( \text{NaOH} \):
\[
\Lambda^0_{\text{Na}^+} + \Lambda^0_{\text{OH}^-} = 48 \times 10^{-4} \, \text{S m}^2/\text{mol}
\]
4. **Set up equations to isolate \( \Lambda^0_{\text{Ba}^{2+}} \) and \( \Lambda^0_{\text{OH}^-} \)**:
- From the equation for \( \text{NaCl} \), we can express \( \Lambda^0_{\text{Cl}^-} \):
\[
\Lambda^0_{\text{Cl}^-} = 126.5 \times 10^{-4} - \Lambda^0_{\text{Na}^+}
\]
- Substitute \( \Lambda^0_{\text{Cl}^-} \) into the equation for \( \text{BaCl}_2 \):
\[
\Lambda^0_{\text{Ba}^{2+}} + 2(126.5 \times 10^{-4} - \Lambda^0_{\text{Na}^+}) = 280 \times 10^{-4}
\]
- Rearranging gives:
\[
\Lambda^0_{\text{Ba}^{2+}} = 280 \times 10^{-4} - 253 \times 10^{-4} + 2\Lambda^0_{\text{Na}^+}
\]
\[
\Lambda^0_{\text{Ba}^{2+}} = 27 \times 10^{-4} + 2\Lambda^0_{\text{Na}^+}
\]
5. **Substituting \( \Lambda^0_{\text{Na}^+} \)**:
- From the equation for \( \text{NaOH} \):
\[
\Lambda^0_{\text{OH}^-} = 48 \times 10^{-4} - \Lambda^0_{\text{Na}^+}
\]
- Substitute this into the expression for \( \Lambda^0_{\text{Ba(OH)}_2} \):
\[
\Lambda^0_{\text{Ba(OH)}_2} = \Lambda^0_{\text{Ba}^{2+}} + 2(48 \times 10^{-4} - \Lambda^0_{\text{Na}^+})
\]
- Combine everything:
\[
\Lambda^0_{\text{Ba(OH)}_2} = (27 \times 10^{-4} + 2\Lambda^0_{\text{Na}^+}) + 96 \times 10^{-4} - 2\Lambda^0_{\text{Na}^+}
\]
\[
\Lambda^0_{\text{Ba(OH)}_2} = 123 \times 10^{-4}
\]
6. **Final Calculation**:
- Therefore, the molar conductance at infinite dilution for \( \text{Ba(OH)}_2 \) is:
\[
\Lambda^0_{\text{Ba(OH)}_2} = 523 \times 10^{-4} \, \text{S m}^2/\text{mol}
\]
### Answer:
The molar conductance at infinite dilution for \( \text{Ba(OH)}_2 \) is \( 523 \times 10^{-4} \, \text{S m}^2/\text{mol} \).
Similar Questions
Explore conceptually related problems
At 25^(@) C, the molar conductance at infinite dilution for the strong electrolytes NaOH, NaCl and BaCl_(2) are 248 xx 10^(-4) , 126 xx 10^(-4) and 280 xx 10^(-4) S m2 mol^(-1) respectively. The value of wedge_(m)^(infty) Ba(OH)_(2) in S m^(2) mol^(-1) will be:
The ionic mobility for some ions in water at 298 K is given as following {:("ions" , "ionic mobility"),(K^(+) , 7.616x10^(-4)),(Ca^(+2), 12.33xx10x^(-4)),(Br^(-) , 8.09xx10^(-4)),(SO_(45)^(-2), 16.58xx10^(-4)):} The equivalent conductance of CaSO_(4) at infinite dilution is
The molar conductance of NaCl varies with the concentration as shown in the following table and all values follows the equation lambda_m^( C)=lambda_m^(oo)-bsqrtC where lambda_(m)^( C) =molar specific conductance lambda_(m)^(oo) =molar specific conductance at infinite dilution C=molar concentration {:("Molar Concentration of NaCl","Molar Conductance" "In" "ohm"^(-1)cm^(2)"mole"^(-1)),(4xx10^(-4),107),(9xx10^(-4),97),(16xx10^(-4),87):} When a certain conductivity cell (C) was filled with 25xx10^(-4) (M) NaCl solution.The resistance of the cell was found to be 1000 ohm.At Infinite dilution, conductance of Cl^(-) and SO_4^(-2) are 80 ohm^(-1) cm^(2) "mole"^(-1) and 160 ohm^(-1) cm^2 "mole"^(-1) respectively. If the cell ( C) is filled with 5xx10^(-3)(N)Na_(2)SO_(4) the obserbed resistance was 400 ohm.What is the molar conductance of Na_(2)SO_(4) .
What will be the molar conductivity of Al 3+ ions at infinite dilution if molar conductivity of Al^(2) (SO_(4))_(3) is 858 S cm^(2) "mol" ^(-1) and ionic conductance of SO_(4)^(2-) is 160 S cm^(2) "mol" ^(-1) at infinite dilution ?
{:("Electrolyte",^^.^(oo)(Scm^(2)mol^(-1))),(KCl,149.9),(KNO_(3),145.0),(HCl,426.2),(NaOAc,91.0),(NaCl,126.5):} Calculate ^^_(HOAc)^(oo) using appropriate molar conductance of the electrolytes listed above at infinite dilution in H_(2)O at 25^(@)C
Calculate molar conductivity of CH_(3)COOH at infinit e dilution if A_(m)^(@) for NACI,HCI and CH_(3)COONA are 126.45,426.16 an 91 S cm(^2) mol^(-1) respectively The molar conductivity of CH 3 COOH at infinite dilution is 390.71 Scm (^)2 mol −1 .
At infinite dilution the molar conductance of Al^(+3) and SO_(4)^(-2) ion are 189 and 160 Omega^(-1) cm^(2) "mole"^(-1) respectively. Calculate the equilvalent and molar conductance at infinite dilution of Al_(2)(SO_(4))_(3) .
For the strong electrolytes NaOH, NaCl and BaCl_(2) the molar ionic conductivities at infinite dilution are 250, 125 and 300 "mho cm"^(2)"mol"^(-1) respectively. The molar conductivity of Ba(OH)_(2) at infinite dilution ("mho cm"^(2)"mol"^(-1)) is .
The molar conductance at infinite dilution for electrolytes BA and CA are 140 and 120 ohm^(-1) Cm^(2) mol^(-1) respectively. If the molar conductance at infinite dilution of BX is 198 ohm^(-1) cm^(2) mol^(-1) , then then at infinite dilution, the molar conductance of is:
The molar conductance of NaCl varies with the concentration as shown in the following table and all values follows the equation. lambda_(m)^(c)=lambda_(m)^(oo)-bsqrt(C) where lambda_(m)^(c) = molar specific conductance lambda_(m)^(oo)= molar specific conductance at infinite dilution C=molar concentration When a certain conductivity cell (C) was filled with 25 xx10^(-4)(M) NaCl solution, the resistance of the cell was found to be 1000 ohm. At infinite dilution, conductance of Cl^(-) and SO_(4)^(2-) are 80ohm^(-1) cm^(2) "mole"^(-1) and 160ohm^(-1) cm^(2) "mole"^(-1) respectively. What is the molar conductance of NaCl at infinite dilution?
Recommended Questions
- For strong electrolytes the values of molar conductivities at infinite...
Text Solution
|
- The dissociation constant of n-butyric acid is 1.6 xx 10^(-5) and the ...
Text Solution
|
- At 25^(@)C , the molar conductances at infinite dilution for the stron...
Text Solution
|
- 15^(@)C, पर अनंत तनुता पर प्रबल विधुत - अपघट्य NaOH,NaCl और BaCl(2) क...
Text Solution
|
- At 25°C the molar conductances at infinite dilution for the strong ele...
Text Solution
|
- For the strong electrolytes NaOH, NaCl and BaCl(2) the molar ionic con...
Text Solution
|
- At 25^(@) C, the molar conductance at infinite dilution for the strong...
Text Solution
|
- For strong electrolytes the values of molar conductivities at infinite...
Text Solution
|
- The molar conductivity at infinite dilution for HCl , KCl and CH(3) Cl...
Text Solution
|