Home
Class 12
PHYSICS
If y=A sin(omegat-kx), then the value of...

If `y=A sin(omegat-kx),` then the value of `(d^2y)/(dt^2)/(d^2y)/(dx^2)`

A

`(k^2)/(omega ^2)`

B

`-(k^2)/(omega ^2)`

C

`(omega ^2)/(k^2)`

D

`-(omega ^2)/(k^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{d^2y}{dt^2} \div \frac{d^2y}{dx^2}\) for the function \(y = A \sin(\omega t - kx)\). ### Step-by-Step Solution: 1. **Identify the function**: \[ y = A \sin(\omega t - kx) \] 2. **Differentiate \(y\) with respect to \(t\)**: \[ \frac{dy}{dt} = A \cos(\omega t - kx) \cdot \frac{d}{dt}(\omega t - kx) = A \cos(\omega t - kx) \cdot \omega \] Thus, \[ \frac{dy}{dt} = A \omega \cos(\omega t - kx) \] 3. **Differentiate again with respect to \(t\) to find \(\frac{d^2y}{dt^2}\)**: \[ \frac{d^2y}{dt^2} = \frac{d}{dt}(A \omega \cos(\omega t - kx)) = A \omega \cdot (-\sin(\omega t - kx)) \cdot \frac{d}{dt}(\omega t - kx) \] \[ \frac{d^2y}{dt^2} = -A \omega^2 \sin(\omega t - kx) \] 4. **Differentiate \(y\) with respect to \(x\)**: \[ \frac{dy}{dx} = A \cos(\omega t - kx) \cdot \frac{d}{dx}(\omega t - kx) = A \cos(\omega t - kx) \cdot (-k) \] Thus, \[ \frac{dy}{dx} = -A k \cos(\omega t - kx) \] 5. **Differentiate again with respect to \(x\) to find \(\frac{d^2y}{dx^2}\)**: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(-A k \cos(\omega t - kx)) = -A k \cdot (-\sin(\omega t - kx)) \cdot \frac{d}{dx}(\omega t - kx) \] \[ \frac{d^2y}{dx^2} = -A k \cdot (-\sin(\omega t - kx)) \cdot (-k) = -A k^2 \sin(\omega t - kx) \] 6. **Now, compute the ratio \(\frac{d^2y}{dt^2} \div \frac{d^2y}{dx^2}\)**: \[ \frac{d^2y}{dt^2} \div \frac{d^2y}{dx^2} = \frac{-A \omega^2 \sin(\omega t - kx)}{-A k^2 \sin(\omega t - kx)} \] The \(-A\) and \(\sin(\omega t - kx)\) terms cancel out: \[ = \frac{\omega^2}{k^2} \] ### Final Result: \[ \frac{d^2y}{dt^2} \div \frac{d^2y}{dx^2} = \frac{\omega^2}{k^2} \]
Promotional Banner

Topper's Solved these Questions

  • Mock test 19

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|13 Videos
  • MOCK TEST 20

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|19 Videos

Similar Questions

Explore conceptually related problems

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

for any differential function y= F (x) : the value of ( d^2 y) /( dx^2) +((dy)/(dx)) ^3 . (d^2 x)/( dy^2)

Show that the equation, y=a sin(omegat-kx) satisfies the wave equation (del^(2) y)/(delt^(2))=v^(2) (del^(2)y)/(delx^(2)) . Find speed of wave and the direction in which it is travelling.

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If y=3cos(logx)+4sin(logx),\ then show that x^2(d^2\ y)/(dx^2)+x(dy)/(dx)+y=0

AAKASH INSTITUTE ENGLISH-MOCK TEST 2-EXAMPLE
  1. A particle moves on a straight line with velocity 2 m/s covers a dista...

    Text Solution

    |

  2. If x = 2t^3 and y = 3t^2, then value of (dy)/(dx) is

    Text Solution

    |

  3. If x = 2(theta + sin theta) and y = 2(1 - cos theta), then value of (d...

    Text Solution

    |

  4. A body moves in straight line and covers first half of the distance wi...

    Text Solution

    |

  5. A truck moves a distance of 50 km. It covers first half of the distanc...

    Text Solution

    |

  6. The displacement x of a particle moving along x-axis at time t is give...

    Text Solution

    |

  7. The position of a particle with respect to time t along y-axis is give...

    Text Solution

    |

  8. int2^4 1/x dx is equal to

    Text Solution

    |

  9. If y = log(10) x, then the value of (dy)/(dx) is

    Text Solution

    |

  10. Let y=x^2+ x , the minimum value of y is

    Text Solution

    |

  11. if y = A sin(omega t - kx), then the value of (dy)/(dx) is

    Text Solution

    |

  12. intr^infty (Gm1m2)/(r^2) dr is equal to

    Text Solution

    |

  13. If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

    Text Solution

    |

  14. int0^L (dx)/(ax + b) =

    Text Solution

    |

  15. Consider the parabola y=x^2 The shaded area is

    Text Solution

    |

  16. A particle moves in a straight line so that s=sqrt(t), then its accele...

    Text Solution

    |

  17. The position x of particle moving along x-axis varies with time t as x...

    Text Solution

    |

  18. If F = 2/(sin theta + cos theta) then the minimum value of F out of th...

    Text Solution

    |

  19. The acceleration of a particle moving along a straight line at any tim...

    Text Solution

    |

  20. The velocity of a body depends on time according to the equative v = 2...

    Text Solution

    |