Home
Class 12
PHYSICS
int0^L (dx)/(ax + b) =...

`int_0^L (dx)/(ax + b)` =

A

`1/b In ((aL + b)/b)`

B

`-1/a In ((aL + b)/b)`

C

`1/a In ((aL + b)/b)`

D

`-1/b In ((aL + b)/b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^L \frac{dx}{ax + b} \), we can follow these steps: ### Step 1: Identify the Integral We need to evaluate the integral: \[ \int_0^L \frac{dx}{ax + b} \] ### Step 2: Use the Formula for Integration We know that the integral of \( \frac{1}{x} \) is \( \ln |x| + C \). For our case, we can use the substitution \( u = ax + b \). The differential \( du = a \, dx \) or \( dx = \frac{du}{a} \). ### Step 3: Change the Limits of Integration When \( x = 0 \): \[ u = a(0) + b = b \] When \( x = L \): \[ u = aL + b \] ### Step 4: Rewrite the Integral Now we can rewrite the integral in terms of \( u \): \[ \int_b^{aL + b} \frac{1}{u} \cdot \frac{du}{a} = \frac{1}{a} \int_b^{aL + b} \frac{du}{u} \] ### Step 5: Evaluate the Integral The integral \( \int \frac{du}{u} \) evaluates to \( \ln |u| \): \[ \frac{1}{a} \left[ \ln |u| \right]_b^{aL + b} = \frac{1}{a} \left( \ln |aL + b| - \ln |b| \right) \] ### Step 6: Apply the Logarithmic Property Using the property of logarithms \( \ln A - \ln B = \ln \frac{A}{B} \): \[ \frac{1}{a} \left( \ln |aL + b| - \ln |b| \right) = \frac{1}{a} \ln \left( \frac{aL + b}{b} \right) \] ### Final Result Thus, the final result of the integral is: \[ \int_0^L \frac{dx}{ax + b} = \frac{1}{a} \ln \left( \frac{aL + b}{b} \right) \]
Promotional Banner

Topper's Solved these Questions

  • Mock test 19

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|13 Videos
  • MOCK TEST 20

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|19 Videos

Similar Questions

Explore conceptually related problems

int_0^[x] dx

Evaluate the following integrals. int (dx)/(sqrt(ax + b))

int_(0)^( pi)(dx)/(a+b cos x)(a>b)

int_0^1 e^x dx

int_0^2 e^(x/2) dx

Evaluate the following integrals. int (x dx)/(ax^(2) + b)^(p)

Find int(dx)/(ax+b)

If int_0^ooe^(-ax)dx=1/a , then int_0^oo(x^n)e^(-ax)dx is

Evaluate : int((1)/(ax + b)) dx.

int_0^(2a)f(x)dx is equal to a. 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

AAKASH INSTITUTE ENGLISH-MOCK TEST 2-EXAMPLE
  1. A particle moves on a straight line with velocity 2 m/s covers a dista...

    Text Solution

    |

  2. If x = 2t^3 and y = 3t^2, then value of (dy)/(dx) is

    Text Solution

    |

  3. If x = 2(theta + sin theta) and y = 2(1 - cos theta), then value of (d...

    Text Solution

    |

  4. A body moves in straight line and covers first half of the distance wi...

    Text Solution

    |

  5. A truck moves a distance of 50 km. It covers first half of the distanc...

    Text Solution

    |

  6. The displacement x of a particle moving along x-axis at time t is give...

    Text Solution

    |

  7. The position of a particle with respect to time t along y-axis is give...

    Text Solution

    |

  8. int2^4 1/x dx is equal to

    Text Solution

    |

  9. If y = log(10) x, then the value of (dy)/(dx) is

    Text Solution

    |

  10. Let y=x^2+ x , the minimum value of y is

    Text Solution

    |

  11. if y = A sin(omega t - kx), then the value of (dy)/(dx) is

    Text Solution

    |

  12. intr^infty (Gm1m2)/(r^2) dr is equal to

    Text Solution

    |

  13. If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

    Text Solution

    |

  14. int0^L (dx)/(ax + b) =

    Text Solution

    |

  15. Consider the parabola y=x^2 The shaded area is

    Text Solution

    |

  16. A particle moves in a straight line so that s=sqrt(t), then its accele...

    Text Solution

    |

  17. The position x of particle moving along x-axis varies with time t as x...

    Text Solution

    |

  18. If F = 2/(sin theta + cos theta) then the minimum value of F out of th...

    Text Solution

    |

  19. The acceleration of a particle moving along a straight line at any tim...

    Text Solution

    |

  20. The velocity of a body depends on time according to the equative v = 2...

    Text Solution

    |