Home
Class 12
PHYSICS
The potential energy of body of mass 2 k...

The potential energy of body of mass `2` kg moving along the x-axis is given by `U = 4x^2`, where x is in metre. Then the time period of body (in second) is

A

`3`

B

`3π`

C

`π/3`

D

`π`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The potential energy of a particle of mass 1 kg in motin along the x-axis is given by U = 4(1-cos2x)J Here, x is in meter. The period of small osciallationis (in second) is

The potential energy of particle of mass 1kg moving along the x-axis is given by U(x) = 16(x^(2) - 2x) J, where x is in meter. Its speed at x=1 m is 2 m//s . Then,

The potential energt of a particle of mass 0.1 kg, moving along the x-axis, is given by U=5x(x-4)J , where x is in meter. It can be concluded that

athe potential energy of a particle of mass 2 kg moving along the x-axis is given by U(x) = 4x^2 - 2x^3 ( where U is in joules and x is in meters). The kinetic energy of the particle is maximum at

The potential energy of a particle of mass 5 kg moving in the x-y plane is given by U=(-7x+24y)J , where x and y are given in metre. If the particle starts from rest, from the origin, then the speed of the particle at t=2 s is

The potential energy of a particle of mass 5 kg moving in the x-y plane is given by U=(-7x+24y)J , where x and y are given in metre. If the particle starts from rest, from the origin, then the speed of the particle at t=2 s is

The potential energy of a particle moving along y axis is given by U(y)= 3y^4+12y^2 ,(where U is in joule and y is in metre). If total mechanical energy is 15 joule, then limits of motion are

The potential energy of a particle of mass 1 kg moving along x-axis given by U(x)=[(x^(2))/(2)-x]J . If total mechanical speed (in m/s):-

The potential energy of a particle of mass 1 kg moving in X-Y plane is given by U=(12x+5y) joules, where x an y are in meters. If the particle is initially at rest at origin, then select incorrect alternative :-

The position (x) of body moving along x-axis at time (t) is given by x=3f^(2) where x is in matre and t is in second. If mass of body is 2 kg, then find the instantaneous power delivered to body by force acting on it at t=4 s.