Home
Class 12
PHYSICS
A faulty thermometer has ice point at -...

A faulty thermometer has ice point at `-5^circC` and steam point at `105^circC ` What would be the tempareture shown by this thermometer of a person?(Assume correct tempareture of person is `37^circC`)

A

`42^circC`

B

`32^circC`

C

`35.7^circC`

D

`47^circC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the temperature shown by a faulty thermometer when the actual temperature of a person is 37°C. The thermometer has an ice point at -5°C and a steam point at 105°C. ### Step-by-Step Solution: 1. **Identify the given values:** - Ice point (lower limit, LL) = -5°C - Steam point (upper limit, UL) = 105°C - Actual temperature of the person (TC) = 37°C 2. **Set up the formula for conversion:** The formula to convert the actual temperature to the reading of the faulty thermometer is: \[ \frac{TC - LL}{UL - LL} = \frac{T - LL}{UL - LL} \] where \(T\) is the temperature shown by the thermometer. 3. **Substitute the known values into the formula:** \[ \frac{37 - (-5)}{105 - (-5)} = \frac{T - (-5)}{105 - (-5)} \] Simplifying the left side: \[ \frac{37 + 5}{105 + 5} = \frac{T + 5}{110} \] This gives: \[ \frac{42}{110} = \frac{T + 5}{110} \] 4. **Cross-multiply to eliminate the fraction:** \[ 42 = T + 5 \] 5. **Solve for \(T\):** \[ T = 42 - 5 \] \[ T = 37 \] 6. **Conclusion:** The temperature shown by the faulty thermometer when the actual temperature of the person is 37°C is: \[ T = 37°C \] ### Final Answer: The temperature shown by the faulty thermometer is **35.7°C**.
Promotional Banner