Home
Class 12
MATHS
If P(A)=(2)/(5),P(B)=(3)/(10) and P(Acap...

If `P(A)=(2)/(5),P(B)=(3)/(10)` and `P(AcapB)=(1)/(5)` then `P((A')/(B')).P((B')/(A'))` equals

A

`(5)/(6)`

B

`(5)/(7)`

C

`(25)/(42)`

D

`(1)/(42)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(A' \cap B') \) and then compute \( P(A'|B') \cdot P(B'|A') \). ### Step-by-Step Solution: 1. **Identify Given Values**: - \( P(A) = \frac{2}{5} \) - \( P(B) = \frac{3}{10} \) - \( P(A \cap B) = \frac{1}{5} \) 2. **Calculate \( P(A \cup B) \)**: Using the formula for the union of two events: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substitute the given values: \[ P(A \cup B) = \frac{2}{5} + \frac{3}{10} - \frac{1}{5} \] To perform the addition, convert all fractions to have a common denominator (10): \[ P(A \cup B) = \frac{4}{10} + \frac{3}{10} - \frac{2}{10} = \frac{5}{10} = \frac{1}{2} \] 3. **Calculate \( P(A' \cap B') \)**: Using De Morgan's law: \[ P(A' \cap B') = 1 - P(A \cup B) \] Substitute the value we found for \( P(A \cup B) \): \[ P(A' \cap B') = 1 - \frac{1}{2} = \frac{1}{2} \] 4. **Calculate \( P(B') \)**: Using the complement rule: \[ P(B') = 1 - P(B) = 1 - \frac{3}{10} = \frac{7}{10} \] 5. **Calculate \( P(A') \)**: Using the complement rule: \[ P(A') = 1 - P(A) = 1 - \frac{2}{5} = \frac{3}{5} \] 6. **Calculate \( P(A' | B') \)**: Using the conditional probability formula: \[ P(A' | B') = \frac{P(A' \cap B')}{P(B')} \] Substitute the values: \[ P(A' | B') = \frac{\frac{1}{2}}{\frac{7}{10}} = \frac{1}{2} \cdot \frac{10}{7} = \frac{5}{7} \] 7. **Calculate \( P(B' | A') \)**: Using the conditional probability formula: \[ P(B' | A') = \frac{P(A' \cap B')}{P(A')} \] Substitute the values: \[ P(B' | A') = \frac{\frac{1}{2}}{\frac{3}{5}} = \frac{1}{2} \cdot \frac{5}{3} = \frac{5}{6} \] 8. **Final Calculation**: Now, we need to find \( P(A' | B') \cdot P(B' | A') \): \[ P(A' | B') \cdot P(B' | A') = \frac{5}{7} \cdot \frac{5}{6} = \frac{25}{42} \] ### Final Answer: \[ P(A' | B') \cdot P(B' | A') = \frac{25}{42} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-B|10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If P(A)=(1)/(4),P(B)=(1)/(2)andP(AcapB)=(1)/(8) , find (a) P(AuuB).

If P(A) = (2)/(5), P(B) = (1)/(3) , P(A cap B) = (1)/(5) , Find P((bar(A))/(bar(B))) .

If P(A)=2/5,P(B)=3/10andP(AcapB)=1/5 then P(A'/B') cdot P(B'/A') is equal to

If A and B be two events such that P(A)= (1)/(2)P(B) = (1)/(3) and P((A)/(B))=(1)/(4) then P(AnnB) equals

If P(A)=7/13,P(B)=9/13 and P(AcapB)=4/13 , then P(A'/B) is equal to

If P(A)=(1)/(4), P(overline(B))=(1)/(2) " and " P(A cup B)=(5)/(9) , then P(A//B) is

If P(A)=3/10,P(B)=2/5 and P(AcupB)=3/5 then P(B/A)+P(A/B) equals to

If P(A)=(1)/(4), P(B)=(1)/(13) and P(AcapB)=(1)/(52) , then the value of P(overline(A)capoverline(B)) , is A. (3)/(13) B. (5)/(13) C. (7)/(13) D. (9)/(13)

If P(A) = 3/10 ,P(B) =2/5 and P(A cup B) = 3/5 , then P(B//A) +P(A//B) =

If P(A) = 3/10 ,P(B) = 2/5 and P(A cu B) = 3/5 then P(B/A) +P(A/B)=