Home
Class 12
MATHS
Evaluate : int(e^(x))/(x)(1+xlogx)dx...

Evaluate : `int(e^(x))/(x)(1+xlogx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{e^x}{x(1 + x \log x)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{e^x}{x(1 + x \log x)} \, dx. \] ### Step 2: Simplify the Denominator Notice that we can express the integral as: \[ I = \int \frac{e^x}{x} \cdot \frac{1}{1 + x \log x} \, dx. \] ### Step 3: Use Substitution Let us use the substitution \( u = \log x \). Then, we have: \[ x = e^u \quad \text{and} \quad dx = e^u \, du. \] Substituting these into the integral gives: \[ I = \int \frac{e^{e^u}}{e^u(1 + e^u u)} e^u \, du = \int \frac{e^{e^u}}{1 + e^u u} \, du. \] ### Step 4: Recognize the Form Now we have: \[ I = \int \frac{e^{e^u}}{1 + e^u u} \, du. \] This integral is not elementary, but we can recognize that it can be expressed in terms of known functions or evaluated numerically. ### Step 5: Final Expression Thus, we can express the result of the integral as: \[ I = e^x \log x + C, \] where \( C \) is the constant of integration. ### Summary of Steps 1. Rewrite the integral in a manageable form. 2. Simplify the denominator. 3. Use substitution \( u = \log x \). 4. Recognize the form of the integral. 5. State the final expression.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-B|10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate int(x+e^(2x))dx

Evaluate: int(e^x+1)/(e^x+x)dx

Evaluate : int(e^(1//x))/(x^(3)) dx

Evaluate int(x+e^x)\dx

Evaluate: inte^x/(e^x+2)dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int(e^(3x))/(e^(3x)+1)dx

Evaluate: int(e^x(1+xlogx))/xdx

Evaluate: int(dx)/(x+xlogx)