Home
Class 12
MATHS
Let f(x)={{:((1+sinx)",","when "0lexlt(p...

Let `f(x)={{:((1+sinx)",","when "0lexlt(pi)/(2)),(1","," when "xlt0):}` . Find Rf'(0)

Text Solution

AI Generated Solution

The correct Answer is:
To find the right-hand derivative \( f'(0) \) for the function defined as: \[ f(x) = \begin{cases} 1 + \sin x & \text{when } 0 \leq x < \frac{\pi}{2} \\ 1 & \text{when } x < 0 \end{cases} \] we will follow these steps: ### Step 1: Identify the right-hand derivative formula The right-hand derivative at \( x = 0 \) is given by the limit: \[ f'(0) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} \] ### Step 2: Calculate \( f(0) \) Since \( 0 \) is in the interval \( [0, \frac{\pi}{2}) \), we use the first case of the function: \[ f(0) = 1 + \sin(0) = 1 + 0 = 1 \] ### Step 3: Substitute into the derivative formula Now we substitute \( f(0) \) into the derivative formula: \[ f'(0) = \lim_{h \to 0^+} \frac{f(h) - 1}{h} \] ### Step 4: Determine \( f(h) \) for \( h > 0 \) For \( h > 0 \), since \( h \) is still in the interval \( [0, \frac{\pi}{2}) \), we have: \[ f(h) = 1 + \sin(h) \] ### Step 5: Substitute \( f(h) \) into the limit Now we can substitute \( f(h) \) into our limit: \[ f'(0) = \lim_{h \to 0^+} \frac{(1 + \sin(h)) - 1}{h} = \lim_{h \to 0^+} \frac{\sin(h)}{h} \] ### Step 6: Evaluate the limit We know from calculus that: \[ \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \] Thus, we have: \[ f'(0) = 1 \] ### Final Answer The right-hand derivative \( f'(0) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-B|10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

If f(x)={{:(3x-1" when "xle0),(x+1" when "xgt0):} , find f(-1) and f(0).

If f(x)= {(x^2,"when" ,xlt0),( x ," when", 0lexlt1),( 1/x ," when", x gt1):} F i n d : (i) . f(1//2) (ii) . f(-2) (iii) . f(1) (iv) . f(sqrt(3)) (v) . f(-sqrt(3))

If f(x)={{:(2x-1,"when "xle0),(x^(2),"when "xgt0):},"then find "f((1)/(2)) and f((-1)/(2))

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "

If f(x)={{:(1+x",",-1lexlt0),(x^(2)-1",",0ltxlt2),(2x",",2lex):} Find f(3),f(-2),f(0),f((1)/(2))f(2-h),f(-1+h) , where hgt0 is very small.

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is