Home
Class 12
MATHS
Evaluate : intx^(2n-1)sin(x^(n))dx...

Evaluate : `intx^(2n-1)sin(x^(n))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int x^{2n-1} \sin(x^n) \, dx \), we will use a substitution method and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x^n \). Then, differentiating both sides gives: \[ dt = n x^{n-1} \, dx \quad \Rightarrow \quad dx = \frac{dt}{n x^{n-1}} \] Since \( x = t^{1/n} \), we can express \( x^{n-1} \) in terms of \( t \): \[ x^{n-1} = (t^{1/n})^{n-1} = t^{(n-1)/n} \] Thus, we have: \[ dx = \frac{dt}{n t^{(n-1)/n}} \] ### Step 2: Rewrite the Integral Now substitute \( x^{2n-1} \) and \( dx \) into the integral: \[ I = \int (t^{(1/n)})^{2n-1} \sin(t) \cdot \frac{dt}{n t^{(n-1)/n}} = \frac{1}{n} \int t^{(2n-1)/n} \sin(t) \cdot t^{-(n-1)/n} \, dt \] This simplifies to: \[ I = \frac{1}{n} \int t^{n} \sin(t) \, dt \] ### Step 3: Integration by Parts To evaluate \( \int t^n \sin(t) \, dt \), we will use integration by parts. Let: - \( u = t^n \) and \( dv = \sin(t) \, dt \) Then: - \( du = n t^{n-1} \, dt \) - \( v = -\cos(t) \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int t^n \sin(t) \, dt = -t^n \cos(t) - \int -\cos(t) \cdot n t^{n-1} \, dt \] This gives: \[ \int t^n \sin(t) \, dt = -t^n \cos(t) + n \int t^{n-1} \cos(t) \, dt \] ### Step 4: Substitute Back Now substituting back into our expression for \( I \): \[ I = \frac{1}{n} \left( -t^n \cos(t) + n \int t^{n-1} \cos(t) \, dt \right) \] Substituting \( t = x^n \) back into the equation: \[ I = \frac{1}{n} \left( -x^{n} \cos(x^n) + n \int x^{n-1} \cos(x^n) \, dx \right) \] ### Final Expression Thus, the final expression for the integral \( I \) is: \[ I = -\frac{x^n \cos(x^n)}{n} + \int x^{n-1} \cos(x^n) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-B|10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intx^n\ dx

Evaluate: intxe^(x^2)dx

Evaluate intx^3(x-1)\dx

Evaluate intx^5(x-1)\dx

Evaluate intx^6(2-x)\dx

Evaluate: intx/e^(x^2)dx

Evaluate: intx^2e^(-x)dx

intx^(2) . sin x^(3) dx

Evaluate: intx/(x^2-1)\ dx

Evaluate : intxe^(x^2)dx .