Home
Class 12
MATHS
If A=((2,2,-4),(-4,2,-4),(2,-1,5))and B=...

If `A=((2,2,-4),(-4,2,-4),(2,-1,5))and B=((1,-1,0),(2,3,4),(0,1,2))`, find AB. Hence, solve the following equations `x-y=3,2x+3y+4z=17` and y+2z=7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will first compute the product of matrices A and B, and then use the result to solve the system of equations. ### Step 1: Matrix Multiplication Given: \[ A = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] We need to find \( AB \). The product of two matrices \( A \) and \( B \) is calculated by taking the dot product of the rows of \( A \) with the columns of \( B \). #### Calculation of \( AB \): 1. **First Row of A with Columns of B**: - First element: \( (2 \cdot 1) + (2 \cdot 2) + (-4 \cdot 0) = 2 + 4 + 0 = 6 \) - Second element: \( (2 \cdot -1) + (2 \cdot 3) + (-4 \cdot 1) = -2 + 6 - 4 = 0 \) - Third element: \( (2 \cdot 0) + (2 \cdot 4) + (-4 \cdot 2) = 0 + 8 - 8 = 0 \) So, the first row of \( AB \) is \( (6, 0, 0) \). 2. **Second Row of A with Columns of B**: - First element: \( (-4 \cdot 1) + (2 \cdot 2) + (-4 \cdot 0) = -4 + 4 + 0 = 0 \) - Second element: \( (-4 \cdot -1) + (2 \cdot 3) + (-4 \cdot 1) = 4 + 6 - 4 = 6 \) - Third element: \( (-4 \cdot 0) + (2 \cdot 4) + (-4 \cdot 2) = 0 + 8 - 8 = 0 \) So, the second row of \( AB \) is \( (0, 6, 0) \). 3. **Third Row of A with Columns of B**: - First element: \( (2 \cdot 1) + (-1 \cdot 2) + (5 \cdot 0) = 2 - 2 + 0 = 0 \) - Second element: \( (2 \cdot -1) + (-1 \cdot 3) + (5 \cdot 1) = -2 - 3 + 5 = 0 \) - Third element: \( (2 \cdot 0) + (-1 \cdot 4) + (5 \cdot 2) = 0 - 4 + 10 = 6 \) So, the third row of \( AB \) is \( (0, 0, 6) \). Combining all rows, we get: \[ AB = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] ### Step 2: Solve the System of Equations The equations given are: 1. \( x - y = 3 \) (Equation 1) 2. \( 2x + 3y + 4z = 17 \) (Equation 2) 3. \( y + 2z = 7 \) (Equation 3) We can express these equations in matrix form: \[ \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] Let \( M = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \) and \( N = \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \). To find \( X \) (which contains \( x, y, z \)), we need to find \( M^{-1}N \). Since we found that \( AB = 6I \), we know that \( B^{-1} = \frac{1}{6}A \). Thus, we can write: \[ X = B^{-1}N = \frac{1}{6}A \cdot N \] Calculating \( A \cdot N \): \[ A \cdot N = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] 1. First element: \( (2 \cdot 3) + (2 \cdot 17) + (-4 \cdot 7) = 6 + 34 - 28 = 12 \) 2. Second element: \( (-4 \cdot 3) + (2 \cdot 17) + (-4 \cdot 7) = -12 + 34 - 28 = -6 \) 3. Third element: \( (2 \cdot 3) + (-1 \cdot 17) + (5 \cdot 7) = 6 - 17 + 35 = 24 \) So, \( A \cdot N = \begin{pmatrix} 12 \\ -6 \\ 24 \end{pmatrix} \). Now, we calculate \( X \): \[ X = \frac{1}{6} \begin{pmatrix} 12 \\ -6 \\ 24 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \] Thus, the solution is: \[ x = 2, \quad y = -1, \quad z = 4 \] ### Final Answer: The solution to the equations is: - \( x = 2 \) - \( y = -1 \) - \( z = 4 \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-B|10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

Given that A= [(1,-1,0),(2,3,4),(0,1,2)] and B= [(2,2,-4),(-4,2,-4),(2,-1,5)] , find AB. Using the result solve the following system of equation: x-y=3, 2x+ 3y + 4z=17 and y+2z= 7

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If A=[(1,2,-3),(2,3,2),(3,-3,-4)] then find A^-1 and hence solve the follwoing equations: x+2y-3z=4, 2x+3y+2z=2 and 3x-3y-4z=11

If A=[(1,-1, 0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1, 5)] are two square matrices, find A B and hence solve the system of linear equations: x-y=3,\ \ 2x+3y+4z=17 ,\ \ y+2z=7

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

Using matrices, solve the following system of equations: x\ -\ y+z=4;\ 2x+y\ -\ 3z=0;\ x+y+z=2

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] , find A^(-1) and hence solve the system of linear equations: \ 2x-3y+5z=11 ,\ \ 3x+2y-4z=5,\ \ x+y-2z=-3