Home
Class 12
MATHS
Solve: /\ = |[omega^(3),omega^(4),omega^...

Solve: `/_\ = |[omega^(3),omega^(4),omega^(5)],[omega^(6),omega^(8),omega^(2)],[omega^(7),omega^(9),omega]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the cube root of unity then find the value of |[1,omega^(6),omega^(8)],[omega^(6),omega^(3),omega^(7)],[omega^(8),omega^(7),1]|

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

If omega is cube root of unit,then value of | omega^(1)quad omega^(4)quad omega^(8) determinant det[[omega^(1),omega^(8),omega^(8)omega^(4),omega^(8),1omega^(8),1,omega^(4)]] is

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

(1-omega+omega^(2))(1+omega-omega^(2))=4

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)