Home
Class 12
MATHS
If [(lambda^(2)-2lambda+1,lambda-2),(1-l...

If `[(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C`, where A, B and C are matrices then find matrices B and C.

Promotional Banner

Similar Questions

Explore conceptually related problems

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

Let p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t=|[lambda^(2)+3 lambda,lambda-1,lambda-3],[lambda-1,-2 lambda,lambda-4],[lambda-3,lambda+3,3 lambda]| be an identity in lambda ,where p,q,r,s and t are constants.Then the value of t is

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

|[a^(2)+lambda^(2),ab+c lambda,ca-b lambdaab-c lambda,b^(2)+lambda^(2),bc+aca+b lambda,bc-a lambda,c^(2)+lambda^(2) then he value of lambda is 8 b.27, c.1 d.-1=(1+a^(2)+b^(2)+c^(2))^(3)

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If p lambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(2)+c^(2), a^(2) + lambda , a^(2) + lambda),(b^(2)+lambda,c^(2)+a^(2),b^(2)+lambda),(c^(2)+lambda,c^(2)+lambda,a^(2)+b^(2)):}| is an identity in lambda wherep, q, r,s , t are constants, then the value of t is