Home
Class 11
MATHS
lim(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))...

`lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim_(n rarr oo)(1^(2)+2^(2)+3^(2)++n^(2))/(n^(3)) is equal to a.1b*c*1/3d.0

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to