Home
Class 12
MATHS
Prove the following: cot^(-1)((sqrt(1+si...

Prove the following: `cot^(-1)((sqrt(1+sinx)\ \ +\ \ sqrt(1-sinx))/(sqrt(1+sinx)-\ sqrt(1-sinx)))=x/2\ ,\ x\ \ (0,pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

value of int_0^1cot^-1((sqrt(1+sinx)+(sqrt(1-sinx)))/((sqrt(1+sinx)-(sqrt(1-sinx)))))dx

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV quadrant)

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).