Home
Class 12
MATHS
Lim(x ->oo) (sin sqrt(x + 1) - sinsqrt(x...

`Lim_(x ->oo) (sin sqrt(x + 1) - sinsqrt(x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sin sqrt(x+1)-sin sqrt(x)) is equal to

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

lim_ (x rarr oo) (sqrt (x + 1) -sqrt (x))

lim_(x->oo) (x-sqrt(x^2-1))

lim_(xrarr1) (sinsqrt(x))/(sqrt(sinx)) is equal to

lim_(x rarr oo) (sqrt(x+1)-sqrtx)sqrtx

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

The value of lim_(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equals