Home
Class 11
MATHS
vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)...

`vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k)`, then find `(vec(a) xx vec(b)).(vec(b) xx vec(c ))`.

Text Solution

Verified by Experts

The correct Answer is:
`-54`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(b) III|8 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) I|15 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(b) I|14 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

vec(a)= 3vec(i)- vec(j) + 2vec(k), vec(b)= -vec(i) + 3vec(j) + 2vec(k), vec(c )= 4vec(i) + 5vec(j)- 2vec(k) and vec(d)= vec(i) + 3vec(j) + 5vec(k) , then compute (vec(a) xx vec(b)).vec( c) - (vec(a) xx vec(d)).vec(b)

If vec(a)= -vec(i) + vec(j) + vec(k), vec(b)= vec(i)-vec(j) + vec(k), vec(c )= vec(i) + vec(j)-vec(k) , then the vectors vec(a) xx vec(b), vec(b) xx vec(c ), vec(c ) xx vec(a) are

If vec(r )= x vec(i) + y vec(j) + z vec(k) then (vec(r ) xx vec(i)).(vec(r ) xx vec(j)) + xy=

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If 13 vec(a)= 3vec(i) + 4vec(j)+ 12vec(k), 13vec(b)= 4vec(i)-12vec(j) + 3vec(k), 13vec(c )=12vec(i) + 3vec(j)-4vec(k) , then vec(a) xx vec(b) =

If vec(r )= x vec(i) + y vec(j) + z vec(k) then find (vec(r ) xx vec(i))^(2)- (vec(r )xx vec(k))^(2)

If vec(a)= 3 vec(i)- vec(j)-2vec(k), vec(b)= 2vec(i) + 3vec(j) + vec(k) , then (vec(a) + 2vec(b)) xx (2vec(a) - vec(b)) =

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=