Home
Class 11
MATHS
If [vecb" "vec(c)" "vecd]+[vec(c)" "vec(...

If `[vecb" "vec(c)" "vecd]+[vec(c)" "vec(a)" "vecd]+[vec(a)" "vecb" "vecd]=[a" "b" "c]` then show that the points with position vectors a,b,c and `vecd` are coplanar.

Answer

Step by step text solution for If [vecb" "vec(c)" "vecd]+[vec(c)" "vec(a)" "vecd]+[vec(a)" "vecb" "vecd]=[a" "b" "c] then show that the points with position vectors a,b,c and vecd are coplanar. by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) III|11 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|46 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) I|15 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a).vec(b) = vec(a).vec(c ) and vec(a) xx vec(b)= vec(a) xx vec(c ) and vec(a) ne vec(0) then show that vec(b)= vec(c )

If veca,vecb,vec(c) are non-coplanar, then show that the vectors veca-vecb,vecb+vec(c),vec(c)+vec(a) are planar.

Knowledge Check

  • If vec(a) xx vec(b)= vec(c ) xx vec(d), vec(a) xx vec(c )= vec(b) xx vec(d) , then

    A
    `(vec(a)-vec(d))//(vec(b)-vec(c ))`
    B
    `(vec(a)-vec(b))//(vec(c )-vec(d))`
    C
    `(vec(a)-vec(c ))//(vec(b)- vec(d))`
    D
    `(vec(a) + vec(b))//(vec(c ) + vec(d))`
  • Let vec(C ) = vec(A) + vec(B) ,

    A
    `|vec(C )|` is always greater than `|vec(A)|`
    B
    It is possible to have `|vec(C )| lt |vec(A)| and |vec(C )| lt |vec(B)|`
    C
    `|vec( C)|` is always equal to `|vec(A)| + |vec(B)|`
    D
    None of the above
  • If vec(C ) = vec(A) - vec(B) , then:

    A
    `bar(A) xx bar(C ) = bar(B) xx bar(C )`
    B
    `bar(A) xx bar(C ) = bar(B) xx bar(C )`
    C
    `|vec(A) - vec(B)| gt |vec(B)| -|vec(B)|`
    D
    `vec(B) xx vec(A) = vec(C ) xx vec(A)`
  • Similar Questions

    Explore conceptually related problems

    Compute vecaxx(vecb+vec(c))+vecbxx(vec(c)+veca)+vec(c)xx(veca+vecb) .

    Let vec(a), vec(b), vec(c ) be such that vec(c ) ne vec(0), vec(a) xx vec(b)= vec(c ) and vec(b) xx vec(c )= vec(a) then show that vec(a), vec(b) and vec(c ) are pairwise perpendicular, |vec(b)|=1 and |vec(c )|= |vec(a)| .

    If vec(C) = vec(A) + vec(B) then

    If vec(r ).vec(a) = vec(r ).vec(b)= vec(r ).vec(c )=0 , where vec(a), vec(b), vec(c ) are non coplanar then

    If vec(a) xx vec(b) = vec(b) xx vec(c )= vec(c )xx vec(a) , where vec(a), vec(b), vec(c ) are non zero vectors, then