Home
Class 11
MATHS
If A+B+C=pi then prove that sin2A-sin2...

If `A+B+C=pi` then prove that
`sin2A-sin2B+sin2C=4cosAsinBcosC`

Answer

Step by step text solution for If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS UPTO TRANSFORMATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 6(E)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |18 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=90^(@) then prove that sin2A+sin2B+sin2C=4cosAcosBcosC

If A+B+C=0 , then prove that sin 2A + sin 2B+ sin 2C=-4sin A sin B sin C .

If A+B+C=270^(@) then show that sin2A+sin2B-sin2C=-4sinAsinBcosC

If A+B+C=180^@ , then show that sin2A+sin2B+sin2C=4sinAsinBsinC .

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2

If A+B+C=pi then prove that "sin"A/2+"sin"B/2-"sin"C/2 =-1+4cos((pi-A)/4)cos((pi-B)/4)sin((pi-C)/4)

If A+B+C=180^(@) then prove that the following: sin2A+sin2B-sin2C =4cosAcosBsinC

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C