Home
Class 11
MATHS
Prove that a cos A + b cos B + c cos C =...

Prove that `a cos A + b cos B + c cos C = 4 R sin A sin B sin C`.

Text Solution

Verified by Experts

The correct Answer is:
`4 R sin A sinB sin C = R.H.S`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(a) ) III.|23 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) I.|5 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(a) ) I.|12 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|46 Videos
  • STRAIGHT LINE

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE-3(e)) |32 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .

If A+B+C=(3pi)/(2), prove that cos 2A+ cos 2B+ cos 2C=1-4 sin A sin B sin C .

Knowledge Check

  • Assertion (A): If A, B, C are the angles of a triangle such that cos A + cos B + Cos C = 0 = sin A + sin B + sin C then cos 3A + cos 3B + cos 3C = -3 Reason (R) : If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + singamma then cos 3 alpha + cos 3 beta + cos 3 gamma = 3 cos (gamma+alpha+beta)

    A
    Both A and R are true R is correct explanation to A
    B
    Both A and R are true but R is not correct explanation to A
    C
    A is true R is false
    D
    A is false R is true
  • If A+B+C=270^@ , " then " cos 2A + cos 2B+ cos 2C+ 4 sin A sin B sin C =

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

    If ABCD is a cyclic quadrilateral then show that i) cos A + cos B + cos C + cos D = 0 ii) sin A + sin B = sin C + sin D

    If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

    If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

    If A+B+C=0 , then prove that sin 2A + sin 2B+ sin 2C=-4sin A sin B sin C .

    Prove that (b-a) cos C + c (cos B- cos A) = c. sin ((A-B)/(2) ) cosec ((A+B)/(2))