Home
Class 11
MATHS
Show that (a sin (B-C))/( b^(2) - c...

Show that
` (a sin (B-C))/( b^(2) - c^(2)) - ( b sin (C-A))/( c^(2) - a^(2)) - ( c sin ( A- B))/( a^(2) -b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(c sin (A-B))/( a^(2) - b^(2) )`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(a) ) III.|23 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) I.|5 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(a) ) I.|12 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|46 Videos
  • STRAIGHT LINE

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE-3(e)) |32 Videos

Similar Questions

Explore conceptually related problems

b^(2) sin 2C + C^(2) sin 2B = 2 b sin A

(cos ^(2) ((B-C)/( 2)) )/( (b+c)^(2))+( sin ^(2)((B-C)/( 2)) )/( (b-c)^(2))=

In a Delta ABC " if " a^(2) sin (B - C) + b^(2) sin (C - A) + c^(2) sin (A - B) = 0 , then triangle is

In Delta ABC , if (a)/( c ) = (sin (A-B))/( sin (B-C)) , " then " a^(2) , b^(2) , c^(2) are in

sum (a^(2) sin ( B- C ))/( sin B+ sin C) =