Home
Class 11
MATHS
If y=(Cot^(-1)x^(3))^(2) then find dy/dx...

If `y=(Cot^(-1)x^(3))^(2)` then find `dy/dx`.

Text Solution

Verified by Experts

The correct Answer is:
`=-(6x^(2))/(l+x^(6))cot^(-1)(x^(3))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(a)|33 Videos
  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(b)|37 Videos
  • APPLICATION OF DERIVATIVES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-10(h)|35 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos

Similar Questions

Explore conceptually related problems

If y^(x)=x^(siny) then find dy/dx .

If x=(3at)/(1+t^(3)),y=(3at^(2))/(1+t^(3)) then find dy/dx .

If y=x^(2)e^(x)sinx , then find dy/dx .

If y=sin^(-1)sqrt(x) , then find (dy)/(dx) .

If y = Tan^(-1)(log x) then find (dy)/(dx)

If y = sin^(-1)(cos x) then find (dy)/(dx)

If y =cot^(-1) (1-x+x^2) , then (dy)/(dx) =