Home
Class 11
MATHS
If y=sin(sinx) then show that y''+(tanx)...

If `y=sin(sinx)` then show that `y''+(tanx)y'+ycos^(2)x=0.`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(a)|33 Videos
  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(b)|37 Videos
  • APPLICATION OF DERIVATIVES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-10(h)|35 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos

Similar Questions

Explore conceptually related problems

If y=acos(sinx)+bsin(sinx) then prove that y''+(tanx)y'+ycos^(2)x=0 .

If y=acosx+(b+2x)sinx, then show that y''+y=4cosx .

If y= sin (sin x) then y _(2) + (tan x) y _(1) + y (cos ^(2) x)=

If y =a cos x + (b + 2x) sin x then show that y" + y=4 cos x.

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y=(tanx)^(sinx) then find dy//dx .

if siny=xsin(a+y) then show that dy/dx=sin^(2)(a+y)/(sina) .

If y = Tan ^(-)x then show that (1 + x ^(2)) y _(2) + 2xy _(1) = 0

If y =a cos (sin x) + b sin (sin x) then y _(2) + (tan x) y_(1)=