Home
Class 11
MATHS
If y=e^(t)+cost,x=logt+sint then find dy...

If `y=e^(t)+cost,x=logt+sint` then find `dy/dx`.

Text Solution

Verified by Experts

The correct Answer is:
`=(t(e^(t)-sint))/((l+tcost))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(a)|33 Videos
  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(b)|37 Videos
  • APPLICATION OF DERIVATIVES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-10(h)|35 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos

Similar Questions

Explore conceptually related problems

If y = x^(2) e^(x) sin x , then find (dy)/(dx)

If y^(x)=x^(siny) then find dy/dx .

If x=3cost-2cos^(3)t,y=3sint-2sin^(3)t then find dy/dx .

If x = a[cos t + log tan (t/2)], y = a sin t then find (dy)/(dx) .

If x= a cos^3 t , y = a sin^3 t , find (dy)/(dx)

If x = e^(t)sint, y =e^(t)cost then (d^2y)/(dx^2) at t = pi is

If y=x^(2)e^(x)sinx , then find dy/dx .

If y=e^(2x).log(3x+4) then find dy/dx .

x = a (cost + t sint) , y = a (sint - tcost) find (dy)/(dx) .