Home
Class 11
MATHS
If y=ae^(nx)+be^(-nx), then prove that y...

If `y=ae^(nx)+be^(-nx)`, then prove that `y''=n^(2)y`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(c )|53 Videos
  • APPLICATION OF DERIVATIVES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-10(h)|35 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos

Similar Questions

Explore conceptually related problems

y = ae^(3x) + be^(-2x)

If y = ae ^(nx) + be ^(-nx) then y _(2)=

If y=acos(sinx)+bsin(sinx) then prove that y''+(tanx)y'+ycos^(2)x=0 .

If y=ax^(n+1)+bx^(-n) then show that x^(2)y''=n(n+1)y .

If y= Ae^(mx) +Be^(nx) , show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0 .

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If y= ae^(nx)+be^(-nx),then (d^2y)/(dx^2)-n^2y is equal to

If xy = ae ^(x) + be^(-x) then xy _(2) + 2y _(1) - xy =