Home
Class 11
MATHS
Tan^(-1)((3x-x^(3))/(1-3x^(2)))=...

`Tan^(-1)((3x-x^(3))/(1-3x^(2)))=`

Text Solution

Verified by Experts

The correct Answer is:
`(-6x)/((1+x^(2))^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-9(c )|53 Videos
  • APPLICATION OF DERIVATIVES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-10(h)|35 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos

Similar Questions

Explore conceptually related problems

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

Find the derivative of Tan^(-1)((3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))) .

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

Solve 3Sin^(-1)((2x)/(1+x^(2))) - 4 Cos^(-1)((1-x^(2))/(1+x^(2)))+2Tan^(-1)((2x)/(1-x^(2))) = (pi)/3

int_(1//sqrt3)^(1)(Tan^(-1)x)^(3)/(1+x^(2))dx=