Home
Class 12
MATHS
For any real numbers theta and phi we d...

For any real numbers `theta` and `phi` we define `theta R phi` if and only if `sec^(2) theta - tan^(2) phi =1` the relation R is

Promotional Banner

Similar Questions

Explore conceptually related problems

Eliminate theta, phi from sin theta + sin phi = a , cos theta+ cos phi = b and tan theta/2 * tan phi/2 = c.

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

If tan^(2)theta=2tan^(2)phi+1, then cos2 theta+sin^(2)phi is equal to

If (1+tan theta)(1+tan phi)=2 then theta+phi=

If tan theta=1/2 and tan phi=1/3, then tan(2 theta+phi)

If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then cos ^(2) (theta - phi)=

If : sin (theta + phi) = 2 sin (theta - phi), "then" : tan theta = A) tan phi B) 2 tan phi C) 3 tan phi D) 4 tan phi