Home
Class 12
MATHS
The range of y=(sec^2x-|secx|+4)/(sec^2x...

The range of `y=(sec^2x-|secx|+4)/(sec^2x+|secx|+4) is (1)[3/5, 1)(3)[2/3, 1)(4)[1/3, 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of y=(sec^(2)x-|sec x|+4)/(sec^(2)x+|sec x|+4)is(1)[(3)/(5),1)(3)[(2)/(3),1)(4)[(1)/(3),1)

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

The range of f (x) = secx is R-[-1, 1]

The complete range of y=(4x^(2)-3x+1)/(4x^(2)+5x+1) is (x in R)

(1)/(4)(x-5)-(2)/(3)(x-2)=(1)/(3)

The range of (sin x-cos x)^(2)+cos^(2)((pi)/(4)-x) is A) [1,2] B) [-(1)/(4),(3)/(4)] C) [(3)/(4) , 1] D) [(3)/(2),2]

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) 0 (3 pi)/(4) pi) (0 (3 pi)/(4)

Find the range of following functions : y = sec^(-1)(x^2 + 3x + 1)

Evaluate each of the following: sec^(-1)((sec pi)/(3)) (ii) sec^(-1)((sec(2 pi))/(3))( iii) sec^(-1)((sec(5 pi))/(4))