Home
Class 11
MATHS
if the roots of (a^2+b^2)x^2-2b(a+c)x+(b...

if the roots of `(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0` are real and equal then a,b,c are in

Promotional Banner

Similar Questions

Explore conceptually related problems

if the roots of (a^(2)+b^(2))x^(2)-2b(a+c)+(b^(2)+c^(2))=0 are equal then a,b,c are in

IThe roots of a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are real and equal,then a,b,c are in G.P.II: The number of solutions of |x^(2)-2x+2|=3x-2 is 4

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

The roots of (x+a)(x+b)-8k=(k-2)^(2) are real and equal where a,b,c in R then

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal then a,b,c will be in

If the roots of the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are real where a,b,c,d in R ,then they are Rational Irrational Equal unequal

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.