Home
Class 11
MATHS
If one root is nth power of the other r...

If one root is nth power of the other root of this equation `x^(2)-ax+b=0` then, `b^(n/(n+1))+b^(1/(n+1))`=
(A) `a` (B) `a^(n)` (C) `b^(n)`(D) `ab`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If a=1+b+b^2+b^3+…..to oo where |b|lt1 then roots of equation ax^2+x-ab=0 are (A) -1,ab (B) 1,b (C) -1, b (D) -1,a

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

If ratio of the roots of the equation ax^(2)+bx+c=0 is m:n then (A) (m)/(n)+(n)/(m)=(b^(2))/(ac) (B) sqrt((m)/(n))+sqrt((n)/(m))=(b)/(sqrt(ac))],[" (C) sqrt((m)/(n))+sqrt((n)/(m))=(b^(2))/(ac)]

x=2/3 and x = − 3 are the roots of the equation ax^2 + 7 x + b = 0 , find the values of a a n d b .

If one root of the quadratic equation ax^(2)+bx+c=0 is equal to the nth power of the other , then show that (ac^n)^((1)/(n+1))+(a^(n)c)^((1)/(n+1))+b=0 .

Let A,B be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta For n=0,1,2,..., Let a_(n)=A alpha^(-n)+B beta^(-n)

(d^(n))/(dx^(n))((1)/(ax+b))