Home
Class 11
MATHS
lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x...

`lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1^(x)+2^(x)+3^(x)+...+n^(x))/(n))^((1)/(x))

lim_(xrarr0)((1^(x)+2^(x)+3^(x)+…..+n^(x))/(n))^((a)/(x)) equals

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(x rarr0)((1^(x)+2^(x)+3^(x)+.........n^(x))/(n))^((a)/(pi))

lim_(x rarr0)((1^(x)+2^(x)+.........*+n^(x))/(n))^((1)/(x)) is equal

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

Evaluate : lim_( x -> 0 )( ( 1-x ) ^( 1/n ) -1) /x =

lim_(x rarr0)((a_(1)^(x)+a_(2)^(x)......+a_(n)^(x))/(n))^((1)/(x))=

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

If lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820 , then find n.