Home
Class 11
MATHS
Sum of the series S=(1^(2))/(1)+(1^(3)+2...

Sum of the series `S=(1^(2))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+....`upto `9` terms ,is :
(A) `48`
(B) `96`
(C) `71`
(D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+...... upto nth term

Find the sum of the series (1)/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+... up to n terms.

Sum up to 16 terms of the series (1^(3))/(1) + (1^(3) + 2^(3))/(1 + 3) + (1^(3) + 2^(3) + 3^(3))/(1 + 3 + 5) + .. is

FIn dthe sum of this series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+...+ till 10^(th) term ^(*)

The sum of the first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)...... is :

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is

The sum of first 9terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+2+3)+.... is (1)71(2)96 (3) 142(4)192