Home
Class 12
MATHS
If u=ax-by, then ((del u)/(del y))=...

If `u=ax-by`, then `((del u)/(del y))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=x^y then find (del u)/(del x) and (del u)/(del y) .

If z=ax^(3)+by^(3), where a and b are arbitrary constants, then X((del z)/(del x))+y((del z)/(del y)) is equal to:

If u=ax+b, then (d^(n))/(dx^(n))(f(ax+b)) is equal to a.(d^(n))/(du^(n))(f(u)) b.a(d^(n))/(du^(n))(f(u)) c.a^(n)(d^(n))/(du^(n))f(u) d.a^(-n)(d^(n))/(dx^(n))(f(u))

If U=(y)/(z)+(z)/(x), then find x(del u)/(del x)+y(del u)/(del y)+z(del u)/(del z) .

Solve the partial differential equation (del z)/(del y)=xy :

If z (x + y) = x ^ (2) + y ^ (2) show that [(del z) / (del x) - (del z) / (del y)] ^ (2) = 4 [1 - (del z) / (del x) - (del z) / (del y)]

If u = x ^ (2) tan ^ (- 1) ((y) / (x)) - y ^ (2) tan ^ (- 1) ((x) / (y)), prove that (del ^ (2) u) / (del x del y) = (x ^ (2) -y ^ (2)) / (x ^ (2) + y ^ (2))

If H=f(y-z,z-x,x-y) Prove that (del H)/(del x)+(del H)/(del y)+(del H)/(del z)=0

If x = r cos theta and y = r sin theta, prove that (del ^ (2) r) / (del x ^ (2)) + (del ^ (2) r) / (del y ^ (2)) = (1) / (r) [((del r) / (del x)) ^ (2) + ((del r) / (del y)) ^ (2)]