Home
Class 13
MATHS
Given a funtion g, continous everywhere ...

Given a funtion g, continous everywhere such that `g (1)=5 and int _(0)^(1) g (t) dt =2.` If `f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt,` then find the value of `f ''(1)+f''(1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f'(1)-f'(1) is:

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(tdt)/(1+t^(4)), then find the value of f'(2)

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.