Home
Class 11
MATHS
If cot^-1(sqrtcos1)-tan^-1(sqrtcos1)=alp...

If `cot^-1(sqrtcos1)-tan^-1(sqrtcos1)=alpha,` then the value of `sinalpha ` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1)(sqrt(cos1))-tan^(-1)(sqrt(cos1))=alpha then the value of sin alpha is -

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

If tan^(-1)x-cot^(-1)x=tan^(-1)(1)/(sqrt(3)) find the value of x.

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If alpha is in first quadrant such that tan^(2)alpha=(8)/(7) , then the value of ((1+sinalpha)(1-sinalpha))/((1+cosalpha)(1-cosalpha))

If f(x)=(tan x cot alpha)^((1)/(x-a)),x!=alpha is continuous at x=alpha, then the value of f(alpha) is

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is