Home
Class 12
MATHS
Sum of integral value(s) of x satisfying...

Sum of integral value(s) of `x` satisfying the inequality `(x^(2)-3x-10)/(x^(2)+x+1)<0,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x satisfying the inequality (x^(2)(x+1)(x^(2)-1)(x+2))/(x^(2)-2x-3)<=0

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

" The number of integral values of "'x'" satisfying the inequality "(1)/((x^(2)+x))<=(1)/((2x^(2)+2x+3))" is/are "

Sum of all positive integral values of x satisfying the inequality ((x-1)(x-2)(sin x-2))/(e^((x-4))(x-101))>=0 is

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)le10^(12) are alpha then

The number of integral values of x satisfying the inequality ((3)/(4))^(6x+10-x^(2))<(27)/(64)is_(-)-...-

Nurmber of non negative integral values of x satisfying the inequality (2)/(x^(2)-x+1)-(1)/(x-1)-(2x-1)/(x^(3)+1)>=0 is

Number of integral values of x satisfying the inequality ((e^(x)-pi^(x))log_(2)((x^(2)-5x+6)/(2))(x-8)^(31)(x-5)^(5))/((x+2)^(3)(x^(8)-x^(6)+x^(4)-x^(2)+1))ge0 is/are

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

The number of integral values of x satisfying the inequation x^(2)-|x|-6<=0 is