Home
Class 11
MATHS
If a(1),a(2),a(3),..., are in arithmetic...

If `a_(1),a_(2),a_(3),...,` are in arithmetic progression,then `S=a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+...-a_(2k)^(2)` is equal

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a,a_(3)...a_(n) are in A.P then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+....a_(2k-1)^(2)-a_(2k)^(2)=((k)/(2k-1))(a_(1)^(2)-a_(2k)^(2))

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If the sequence a_(1),a_(2),a_(3),dots a_(n),.... forms an A.P.then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)+...+a_(4)^(2)=(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common rario r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

If a_(1),a_(2),...a_(n) are in H.P then the expression a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n) is equal to