Home
Class 12
PHYSICS
Two particles of mass 'm' and 3 m are in...

Two particles of mass 'm' and 3 m are initially at rest an infinite distance apart. Both the particles start moving due to gravitational attraction. At any instant their relative velocity of approach is `sqrt((n Gm)/d` where 'd' is their separation at that instant. Find n.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two particles of masses m_(1) and m_(2) initially at rest a infinite distance from each other, move under the action of mutual gravitational pull. Show that at any instant therir relative velocity of approach is sqrt(2G(m_(1)+m_(2))//R) where R is their separation at that instant.

Two particles of mass m and M are initialljy at rest at infinite distance. Find their relative velocity of approach due to gravitational attraction when d is their separation at any instant

Two particles m_(1) and m_(2) are initially at rest at infinite distance. Find their relative velocity of approach due to gravitational attraction when their separation is d.

Two particles of mass m and M are initially at rest and infinitely separated from each other. Due to mutual interaction, they approach each other. Their relative velocity of approach at a separation d between them, is

Two bodies of mass m_(1) and m_(2) are initially at rest placed infinite distance apart. They are then allowed to move towards each other under mutual gravitational attaction. Show that their relative velocity of approach at separation r betweeen them is v=sqrt(2G(m_(1)+m_(2)))/(r)

Two particles of masses m and M are initially at rest at an infinite distance part. They move towards each other and gain speeds due to gravitational attracton. Find their speeds when the separation between the masses becomes equal to d .

Two bodies of masses m_(1) and m_(2) are initially at infinite distance at rest. Let they start moving towards each other due to gravitational attraction. Calculate the (i) ratio of accelerations and (ii) speeds at the point where separation between them becomes r.

Two particles of masses m_(1) and m_(2) are intially at rest at an infinite distance apart. If they approach each other under their mutual interaction given by F=-(K)/(r^(2)) . Their speed of approach at the instant when they are at a distance d apart is

Two particles of masses m_(1) and m_(2) are initially at rest infinite distance apart. If they approach each other under inverse square law of force (F=k//r^(2)) find their speed of approach at the instant when they are distance d apart.

Two objects of masses m and 4m are at rest at an infinite separation. They move towards each other under mutual gravitational attraction. If G is the universal gravitaitonal constant, then at separation r