Home
Class 11
MATHS
The value of sum(k=1)^10(sin(2pik)/11-ic...

The value of `sum_(k=1)^10(sin(2pik)/11-icos(2pik)/11)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

The value of sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11} , is

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

The value of sum_(r=1)^(8)(sin(2rpi)/9+icos(2rpi)/9) , is

The value of (Sigma_(k=1)^(4))(sin.(2pik)/(5)-icos.(2pik)/(5))^(4) is (where i is iota)

Find the value off sum_(k1)^10(2+3^k)

The value of Sigma_(i=1)^(6) (sin .(2pik)/(7)-i cos .(2pik)/(7))

The value of sum_(k=1)^(5)(1)/(sin(k+1)sin(k+2)) is