Home
Class 11
MATHS
int(1/e)^( tan x)(tdt)/(1+t^(2))+int(1/e...

`int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))"` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

The value of int_((1)/(epsilon))^(tan x)(tdt)/(1+t^(2))+int_((1)/(epsilon))^(cot x)(dt)/(t(1+t^(2))), where x in((pi)/(6),(pi)/(3)), is equal to: (a)0(b) 2 (c) 1 (d) none of these

For all values of , int_(1//e)^(tanx) (t)/(1+t^(2))dt+int_(1//e)^(tanx) (dt)/(t(t+t^(2))) has the value

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to

if int(e^(t)dt)/(1+t)=a then int e^(t)(dt)/((1+t)^(2))=

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to