Home
Class 9
MATHS
Factorise : a^(2) - (2a + 3b)^(2)...

Factorise :
`a^(2) - (2a + 3b)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 - (2a + 3b)^2 \), we can use the difference of squares identity, which states that \( x^2 - y^2 = (x + y)(x - y) \). ### Step-by-Step Solution: 1. **Identify \( x \) and \( y \)**: Here, we can let \( x = a \) and \( y = (2a + 3b) \). Thus, we can rewrite the expression as: \[ a^2 - (2a + 3b)^2 \] 2. **Apply the difference of squares formula**: According to the difference of squares identity: \[ a^2 - (2a + 3b)^2 = (a + (2a + 3b))(a - (2a + 3b)) \] 3. **Simplify the first factor**: \[ a + (2a + 3b) = a + 2a + 3b = 3a + 3b \] 4. **Simplify the second factor**: \[ a - (2a + 3b) = a - 2a - 3b = -a - 3b \] We can also factor out a negative sign: \[ - (a + 3b) \] 5. **Combine the factors**: Now substituting back, we have: \[ (3a + 3b)(- (a + 3b)) \] This can be rewritten as: \[ - (3a + 3b)(a + 3b) \] 6. **Factor out the common term**: We can factor out 3 from the first factor: \[ - 3(a + b)(a + 3b) \] ### Final Factorised Form: Thus, the final factorised form of the expression \( a^2 - (2a + 3b)^2 \) is: \[ -3(a + 3b)(a + b) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 3a^(2) - 5a + 2

Factorise : a^(2) - 3a - 40

Factorise : a^(2) - 3a - 40

Factorise : 3a^(2) -1-2a

Factorise : 50a^(3) - 2a

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : 2a^(3) - 50a

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : a^(2) + bc- ac - b^(2)